

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME

ENGINEERING MATHEMATICS II

COURSE CODE

BDA 14103 / BWM 10203/ BSM 1923

PROGRAMME

1 BDD/2 BDD/4 BDD/4 BFF

EXAMINATION DATE :

JANUARY 2013

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS IN

PART A AND THREE (3)
QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

PART A

Q1 A periodic function f(x) is defined by

$$f(x) = \begin{cases} 1, & -1 < x < 0, \\ 4, & 0 < x < 1. \end{cases}$$

and

$$f(x) = f(x+2).$$

(a) Sketch the graph of f(x) over -3 < x < 3.

(3 marks)

(b) Calculate the Fourier coefficients, a_0 and a_n .

(8 marks)

(c) Show that the Fourier coefficient, b_n corresponding to f(x) is given by $b_n = \frac{3}{n\pi} [1 - \cos n\pi].$

(6 marks)

(d) Hence, obtain the corresponding Fourier series of f(x).

(3 marks)

Q2 A uniform string of length π is fastened at both of its ends x = 0 and $x = \pi$. The string is oscillating with initial velocity given as $\frac{\delta u}{\delta t}(x,0) = g(x) = 0$ and the initial state of the string is given by u(x,0) = f(x) = 2 + x, $0 < x < \pi$.

This is a wave problem given by,

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < \pi, \quad t > 0.$$

The series solution of this problem is,

$$u(x,t) = \sum_{n=1}^{\infty} \left\{ a_n \cos\left(\frac{n\pi ct}{l}\right) + b_n \sin\left(\frac{n\pi ct}{l}\right) \right\} \sin\left(\frac{n\pi x}{l}\right)$$

- (a) Write
 - (i) the value of the physical constant c,
 - (ii) the initial conditions,
 - (iii) the boundary conditions of the given problem.

(8 marks)

(b) By using

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$
, and $b_n = \frac{2}{n\pi c} \int_0^{\pi} g(x) \sin(nx) dx$

determine a_n and b_n .

(10 marks)

(c) Hence, write the particular solution u(x,t).

(2 marks)

PART B

Q3 (a) Given
$$y = e^x \sin x$$
. Show that $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0$. (4 marks)

(b) Solve the differential equation by using the method of integrating factor.

$$x\frac{dy}{dx} - y = x \tag{4 marks}$$

(c) By using a substitution of y = vx, and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, find the solution of $y' = \frac{x^2 + y^2}{xy}$, given y(1) = 1.

(6 marks)

(d) Solve the following first order differential equation by using the appropriate method.

$$(x + \sin y)dx + (x\cos y - 2y)dy = 0.$$
(6 marks)

Q4 (a) Find the particular solution for the second order differential equation

$$y'' + 2y' - 8y = 0$$
, $y(0) = 5$, $y'(0) = -12$. (6 marks)

(b) Find the general solution for the second order differential equation

$$y'' + 2y' + 5y = x^2 - 1$$
.

by using the undetermined coefficient method.

(7 marks)

(c) Given a non-homogeneous second order differential equation

$$y'' - 6y' + 9y = xe^{3x}$$
.

Find the general solution for the equation by using variation of parameters method.

(7 marks)

Q5 (a) Find the following transforms.

- (i) $L\{(1-e^{-t})^2\},$
- (ii) $L^{-1}\left\{\frac{s+3}{s^2+8s+12}\right\}$.

(12 marks)

(b) Consider the function

$$f(t) = \begin{cases} e^t, & 0 \le t < 2, \\ t - 2, & t \ge 2. \end{cases}$$

- (i) Write the function f(x) in the form of unit step function.
- (ii) Then, find the Laplace transform of f(t).

(8 marks)

Q6 (a) Given
$$f(t) = \begin{cases} 1, & 0 \le t < 3, \\ 2, & 3 \le t < 5, \\ -1, & t \ge 5. \end{cases}$$

- (i) Sketch the graph of f(t).
- (ii) Write f(t) in unit step function.
- (ii) Then, find the Laplace Transform of f(t).

(12 marks)

(b) By using Laplace transform, solve

$$y'' - 6y' + 8y = 2$$
, $y(0) = 0$ and $y'(0) = 0$. (8 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION: SEM 1 / 2012/2013

COURSE: 1 BDD / 2 BDD / 4 BDD

4 BFF

SUBJECT: ENGINEERING MATHEMATICS II

CODE

: BDA 14103 / BWM 10203/ BSM 1923

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.					
Case	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$			

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$		
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)$		
Ceax	$x'(Pe^{ax})$		
$C\cos\beta x$ or $C\sin\beta x$	$x'(P\cos\beta x + Q\sin\beta x)$		
$P_n(x)e^{\alpha x}$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)e^{\alpha x}$		
$\int_{B(x)} \cos \beta x$	$x'(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)\cos\beta x +$		
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x'(C_nx^n + C_{n-1}x^{n-1} + \dots + C_1x + C_0)\sin\beta x$		
$C_{c}^{ax} \left[\cos \beta x \right]$	$x'e^{\alpha x}(P\cos\beta x+Q\sin\beta x)$		
$Ce^{\alpha x}\begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$			
$P_n(x)e^{\alpha x}\begin{cases} \cos \beta x\\ \sin \beta x\end{cases}$	$x''(B_nx^n + B_{n-1}x^{n-1} + \dots + B_1x + B_0)e^{\alpha x}\cos\beta x +$		
$\int_{0}^{T_{n}(x)e} \sin \beta x$	$x'(B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) e^{\alpha x} \cos \beta x + x'(C_n x^n + C_{n-1} x^{n-1} + \dots + C_1 x + C_0) e^{\alpha x} \sin \beta x$		

Note: r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y=uy_1+vy_2,$$

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$.

BDA 14103 / BWM 10203 / BSM 1923

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2012/2013

COURSE: 1BDD/2BDD/4BDD

4 BFF

SUBJECT: ENGINEERING MATHEMATICS II

CODE : BDA 10103 / BWM 10203 /BSM 1923

Laplace Transform

$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
A	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}		
cos at	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$		
cosh at	$\frac{s}{s^2-a^2}$	y(t)	Y(s)		
$t^n, n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)		
$e^{at}f(t)$	F(s-a)	y"(t)	$s^2Y(s)-sy(0)-y'(0)$		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$				

Fourier Series

Fourier series expansion of periodic function with period $2L$	Fourier half-range series expansion
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$
where	where
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$	$a_0 = \frac{2}{L} \int_0^L f(x) dx$
$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$	$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$
$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$	$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$