

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2014/2015**

COURSE NAME

: PARTIAL DIFFERENTIAL

EQUATION

COURSE CODE

: BWA30303

PROGRAMME

: 3 BWA

EXAMINATION DATE : DECEMBER 2014/ JANUARY 2015

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL FIVE (5)

QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 (a) Derive the first order partial differential equation in u(x,y) if its general solution is given by

$$u(x,y) = F(2x - 3y),$$

where F is an arbitrary function. Hence, find the solution of the resulting equation if $u(x,0) = x^2$.

(4 marks)

(b) Use the method of characteristics to solve the initial-value problem

$$u_x - xu_y + u = e^{-x},$$
 $u(x,0) = 0.$ (8 marks)

(c) Solve the non-linear equation

$$u_t + uu_x = 0, \qquad u(x,0) = f(x),$$

where
$$f(x) = \begin{cases} x & , & 0 \le x < 1, \\ 2 - x & , & 1 \le x \le 2, \\ 0 & , & x > 2. \end{cases}$$

Hence, find and sketch the solution at $t = \frac{1}{3}$.

(8 marks)

Q2 (a) Consider the periodic function

$$f(x) = \begin{cases} 0, & -\pi < x < 0, \\ x, & 0 < x < \pi, \end{cases}$$

and $f(x) = f(x + 2\pi)$.

(i) Determine whether the function is even, odd or neither. State your reasons.

(3 marks)

(ii) Compute its Fourier series.

(11 marks)

(b) Find the half-range Sine series of

$$f(x) = 1 - x,$$
 $0 < x < 1.$

(6 marks)

Q3 Given the wave equation

$$u_{tt} = 4u_{xx}, \quad 0 < x < \pi, \quad t > 0,$$

that satisfies the conditions

$$u(0,t) = 0$$
, $u(\pi,t) = 0$, $t > 0$
 $u(x,0) = 0$, $u_t(x,0) = V$, $0 < x < \pi$.

- (a) State the initial and boundary conditions of the wave problem above. (2 marks)
- (b) By assuming u(x,t) = X(x)T(t), show that the wave equation above can be reduced to

$$X'' - pX = 0$$
 and $T'' - 4pT = 0$,

where p is constant.

(4 marks)

(c) By considering p = 0, $p = \lambda^2$ for p > 0 and $p = -\lambda^2$ for p < 0, and by applying u(0,t) = 0 and $u(\pi,t) = 0$, show that

$$u(x,t) = \sum_{n=1}^{\infty} (\sin nx)(P_n \cos 2nt + Q_n \sin 2nt),$$

where P and Q are constants.

(7 marks)

(d) By applying u(x,0) = 0 and $u_t(x,0) = V$, find P_n and Q_n . Hence, write the solution to the above wave problem.

(7 marks)

Q4 (a) Show that $u(x,t) = 3e^{-28t} \sin 2x - 6e^{-175t} \sin 5x$ is a solution of heat equation $u_t = 7u_{xx}$.

(4 marks)

(b) The mathematical model for the heat diffusion in a uniform wire without internal sources whose ends are kept at the constant temperature $0^{\circ}C$ with initial temperature distribution $100^{\circ}C$ is given as

$$u_t = 4u_{xx}, \qquad 0 < x < 1, \quad t > 0.$$

(i) State the boundary and initial conditions for the above heat problem.

(2 marks)

- (ii) Solve this problem using the method of separation of variables. (14 marks)
- Q5 The temperature distribution $u(r,\theta)$ in a circular metal disc of radius 2 that has its top and bottom insulated is described by the equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = u_t, \quad 0 < r < 2, \quad 0 \le \theta \le 2\pi, \quad t > 0.$$

(a) State the condition so that the temperature distribution $u(r,\theta)$ satisfies the Laplace equation.

(2 marks)

(b) Show that the general solution of the Laplace equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0,$$

is
$$u(r,\theta) = (A \ln r + B)(C\theta + D) + (Er^k + Fr^{-k})(R \cos k\theta + S \sin k\theta)$$
,

where A, B, C, D, E, F, R and S are constants.

(8 marks)

(c) State the condition required so that the solution of the Laplace equation in 5(b) can be written as

$$u(r,\theta) = \frac{P_0}{2} + r^k (P\cos k\theta + Q\sin k\theta),$$

where P and Q are constants.

(3 marks)

(d) If $u(2,\theta) = 5$, find the particular solution of the general solution of Laplace problem in 5(c).

(7 marks)

- END OF QUESTION -

FINAL EXAMINATION

Formulae

Fourier Series:
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos\left(\frac{n\pi x}{\ell}\right) + b_n \sin\left(\frac{n\pi x}{\ell}\right) \right\},$$

where
$$a_0 = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) dx$$
,

$$a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad n = 1, 2, 3, ...,$$

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx, \quad n = 1, 2, 3, ...$$

Half Range Cosine Series:
$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right)$$
, where $a_0 = \frac{2}{\ell} \int_0^{\ell} f(x) dx$,
$$a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad n = 1, 2, 3, \dots$$

Half Range Sine Series:
$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right)$$
,
where $b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$, $n = 1, 2, 3, ...$