

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2014/2015

COURSE NAME : ELECTRONICS I

COURSE CODE : BWC 10703

PROGRAMME : 1 BWC

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

Find the total impedance and phase angle for the circuit as in Figure Q1 (a) Q1 (a). (4 Marks)

- Figure Q1 (b) shows a RLC circuit supplied by an AC source, V=12 V(b) and f = 3KHz. Calculate,
 - equivalent impedance, Z_1 for C and L_2 . (i)
 - equivalent impedance, Z_2 for R and L_1 . (ii)
 - total circuit impedance, Z. (iii)

(16 Marks)

- Q2(a) Describe the phenomenon of,
 - avalance breakdown (i)
 - zener breakdown (ii)

(6 marks)

- Figure Q2 (b) represent a power supply circuit which consists of (b) transformer (5:1 ratio) and two rectifier diodes. Given the input of power supply is 100 V_{RMS}. Identify;
 - total peak secondary voltage (i)
 - peak inverse voltage (PIV) for each diode (ii)
 - voltage waveform across load resistor, R_L (draw). (iii)

(8 marks)

List three differences of Bipolar Junction Transistor (BJT) and Field (c) Effect Transistor (FET).

(6 marks)

Q3	(a)	List five applications of Junction Field Effect Transistor (JFET). (3 marks)
	(b)	Figure Q3 (b) shows a common emitter (CE) amplifier circuit which consists of a transistor, resistors and capasitors (coupling and bypass) with given value and $\beta_{DC} = \beta_{AC} = 100$. Calculate,
		(i) base voltage, V_B
		(ii) emitter current, I_E
		(iii) internal emitter resistance, r_e
		(iv) AC voltage gain, A_V
		(v) total input resistance, $R_{in (tot)}$
		(vi) source current, I_S (17 marks)
Q4	(a)	Determine the voltage gain for each common source, CS FET amplifier in Figure Q4 (a)(i) and Figure Q4 (a)(ii). (8 marks)
	(b)	The differential amplifier circuit in Figure Q4 (b) consists of two transistors and supplied by \pm 15 V. Given that transistor 1, T_1 has an $\alpha=0.98$ and transistor 2, T_2 has an $\alpha=0.975$. By using transistor knowledge, determine the dc differential output voltage. (20 marks)
Q5	(a)	State three characteristics of ideal op-amp and three characteristics of practical op-amp. (6 marks)
	(b)	Describe op-amp parameters below.
		(i) Slew Rate (SR)
		(ii) Common Mode Rejection Ratio (CMRR) (4 marks)

CONFIDENTIAL

BWC 10703

- (c) **Figure Q5 (c)** shows a practical differentiator circuit with a triangle input waveform of 5 V. Determine,
 - (i) time constant
 - (ii) output voltage during the rising input and negative going ramp.
 - (iii) draw the output waveform.

(10 marks)

- END OF QUESTION -

SEMESTER/SESSION: SEM II/2014/2015

PROGRAMME: 1 BWC

COURSE NAME : ELECTRONICS I COURSE CODE: BWC 10703

FIGURE Q1(a)

FIGURE Q1 (b)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME

: ELECTRONICS I

PROGRAMME: 1 BWC COURSE CODE: BWC 10703

FIGURE Q2 (b)

FIGURE Q3 (b)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : ELECTRONICS I

N: SEM II/2014/2015 PROGRAMME : 1 BWC : ELECTRONICS I COURSE CODE : BWC 10703

FIGURE Q4 (a)(i)

FIGURE Q4 (a)(ii)

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME : ELECTRONICS I PROGRAMME: 1 BWC COURSE CODE: BWC 10703

