

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2014/2015**

COURSE NAME : ORDINARY DIFFERENTIAL EQUATIONS

COURSE CODE : BWC 10603

PROGRAMME

: 1 BWC

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF SIX (6) PAGES

- Q1 (a) Solve the following first order differential equation.
 - (i) $\frac{dy}{dx} = \frac{y\cos x}{1 + 2y^2},$
 - (ii) $\frac{dy}{dx} = \frac{(y\sin x \sin y)}{(\cos x + x\cos y)}.$

(10 marks)

(b) Solve the given differential equation by using the method of integrating factor.

$$\frac{dy}{dx} - 3y = 6.$$

(4 marks)

- (c) A metal bar at a temperature of 100°F is placed in a special room at a constant temperature of 0°F. After 20 minutes the temperature of the bar is reduced to 50°F, inquire
 - (i) the time it will take the bar to reach a temperature of 25° F.
 - (ii) the temperature of the bar after 10 minutes.

(6 marks)

Q2 (a) Find the general solution for the given second order differential equation.

$$y'' - 36y = 0$$
, $y(0) = 5$, $y'(0) = -6$.

(6 marks)

(b) Find the particular solution for the given second order differential equation by using the method of undetermined coefficient.

$$y'' + 4y' + 8y = \sin x$$
, $y(0) = 1$, $y'(0) = 0$.

(8 marks)

(c) Produce the general solution for the given equation by using the method of variation of parameters.

$$y'' + 16y = 1.$$

(6 marks)

CONFIDENTIAL

BWC 10603

Q3 Given the system of first order differential equations,

$$y_1' = y_1 + 3y_2$$
$$y_2' = 4y_1 + 3y_2$$

(a) Show that the eigenvalues are $\lambda = 5$ and $\lambda = -2$.

(7 marks)

(b) Find the corresponding eigenvectors of A.

(6 marks)

(c) Develop the general solution of the given system.

(7 marks)

Q4 (a) Find $L\{3+2t^2+e^{-2x}\sin 5x\}$.

(6 marks)

(b) Consider the function

$$f(t) = \begin{cases} t - 2, & 0 \le t \le 4 \\ 2, & 4 \le t \le 6 \\ 0, & t \ge 6 \end{cases}$$

- (i) Sketch the graph of f(t).
- (ii) Find the Laplace transform of f(t).

(10 marks)

(c) Analyze the RC circuit problem below and solve it by using Laplace transform.

$$\frac{dI}{dt} + I = 2, \qquad y(0) = 1.$$

(4 marks)

CONFIDENTIAL

BWC 10603

Q5 (a) Find
$$L^{-1} \left\{ \frac{1}{(s+1)(s^2+2)} \right\}$$
.

(8 marks)

(b) By using Laplace transform and then inverse Laplace transform, solve $y' + y = \sin x$ subject to initial condition y(0) = 1.

[Hint: Use the result of **Q5**(a) in your solutions]

(12 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2014/2015

PROGRAMME : 1 BWC

COURSE NAME: ORDINARY DIFFERENTIAL

COURSE CODE: BWC 10603

EQUATIONS

Formula

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0 or $a\ddot{y} + b\dot{y} + cy = 0$ or $a\ddot{y} + b\dot{y} + cy = 0$ or $a\ddot{y} + b\dot{y} + cy = 0$.

Characteristic equation: $am^2 + bm + c = 0$.					
	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$			

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_n(x)$:

f(x)	$y_p(x)$			
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})$			
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$			
$C\cos\beta x$ or $C\sin\beta x$	$x^r(P\cos\beta x + Q\sin\beta x)$			
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}$			
$p(x) \left[\cos \beta x\right]$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x +$			
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})\sin\beta x$			
$C_{\alpha x} \left[\cos \beta x \right]$	$x^r e^{\alpha x} (P\cos\beta x + Q\sin\beta x)$			
$Ce^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$				
$P(x)e^{\alpha x} \int \cos \beta x$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x +$			
$P_n(x)e^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x + x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})e^{\alpha x}\sin\beta x$			

Note: r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

CONFIDENTIAL

BWC 10603

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2014/2015

PROGRAMME: 1 BWC

COURSE NAME: ORDINARY DIFFERENTIAL

COURSE CODE: BWC 10603

EQUATIONS

Formula

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is $y = y_c + y_p$, and $y_p = uy_1 + vy_2$,

where
$$u = -\int \frac{y_2 f(x)}{aW} dx$$
, $v = \int \frac{y_1 f(x)}{aW} dx$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$.

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}		
cosat	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
sinh at	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$		
cosh at	$\frac{s}{s^2 - a^2}$	y(t)	Y(s)		
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s) - y(0)		
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$		9.		