

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME	:	NANOSTRUCTURED MATERIALS
COURSE CODE	:	BWC 30903
PROGRAMME	:	BWC
EXAMINATION DATE	:	JUNE/JULY 2016
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN SECTION A AND SELECT TWO QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

SECTION A

Q1 (a) Briefly explain the energy band gap and how catalyst is fabricated by exploiting the energy band gap of materials chemical reaction.

(8 marks)

(b) Metal such as iron is solid and mercury is in liquid phase at room temperature. Explain how mercury naturally forms liquid phase at room temperature.

(9 marks)

(c) Calculate the atomic packing density along [000] direction of aluminum (Al). Express your answer in units of atoms cm⁻¹.

(8 marks)

Q2 (a) Explain on how to achieve vacuum condition of outer space in a Field Emission Scanning Electron Microscope (FESEM) machine.

(9 marks)

(b) What is the collision condition of electrons during FESEM operation? How can these electrons be used to create patterning of materials on polymer resist used to covered substrate surface?

(8 marks)

(c) Calculate the Bohr radius for hydrogen states from n=1 to n=3. The formula to calculate Bohr orbital is as below, and later schetch the standing wave in the given Figure 2(c).

$$r_n = \frac{\hbar^2 n^2}{m_e k e^2 Z} = \frac{a_0 n^2}{Z} = \frac{52.9 n^2}{Z} \,\mathrm{pm}$$

(8 marks)

CONFIDENTIAL

SECTION B

5 5 5 5

Q3	(a)	Elaborate the process to fabricate nanoparticles either from the photolitho Electron Beam Lithography (EBL) technique	graphy or
		Licentin Dean Danography (DDD) acomique.	(9 marks)
	(b)	Describe the limitations in today's photolithography when it comes to decre	easing the
		feature size.	(8 marks)
	(c)	What are the advantages and the disadvantages of EBL versus photolithogra	aphy? (8 marks)
Q4	(a)	What kind of surface properties is needed to obtain a super hydrophobic sur	face? (9 marks)
	(b)	Elaborate the uniqueness of Carbon and its materials.	(8 marks)
	(c)	Describe a technique to fabricate Carbon Nanotube.	(8 marks)
Q5	(a)	Describe the operation of Fourier Transform Infrared Spectroscopy (FTIR).	(9 marks)
	(b)	What are the advantages and the disadvantages of FTIR?	(8 marks)
	(c)	What can you explain from the FTIR spectrum shown in Figure 5(c).	(8 marks)

CONFIDENTIAL

3

1

CONFIDENTIAL

4

FINAL EXAMINATION

SEMESTER / SESSION	: SEM I / 2015/2016	PROGR
COURSE	: SEMICONDUCTOR	COURS

RAMME : BWC SE CODE : BWC 30203

Constants

. .

Quantity	Symbol	Value
Angstrom unit	Å	$1 \text{ Å} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$
Avogadro number	N	6.023×10^{23} /mol
Boltzmann constant	k	$8.620 \times 10^{-5} \text{ cV/K} = 1.381 \times 10^{-23} \text{ J/K}$
Electronic charge	q	$1.602 \times 10^{-19} \text{ C}$
Electron rest mass	mo	$9.109 \times 10^{-31} \text{ kg}$
Electron volt	cV	$1 \text{ cV} = 1.602 \times 10^{-19} \text{ J}$
Gas constant	R	1.987 cal/molc-K
Permeability of free space	μο	$1.257 \times 10^{-6} \text{ H/m}$
Permittivity of free space	Eo	8.850×10^{-12} F/m
Planck constant	h	$6.626 \times 10^{-34} \text{ J-s}$
Proton rest mass	m_p	$1.673 \times 10^{-27} \text{ kg}$
$h/2\pi$	ħ	$1.054 \times 10^{-34} \text{ J-s}$
Thermal voltage at 300 K	V_T	0.02586 V
Velocity of light in vacuum	С	2.998×10^{10} cm/s
Wavelength of 1-cV quantum	λ	1.24 μm

- END OF QUESTION -

CONFIDENTIAL