

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2015/2016**

COURSE NAME

: ENGINEERING MATHEMATICS III

COURSE CODE

: BWM20403

PROGRAMME

: BEJ / BEV

EXAMINATION DATE : JUNE / JULY 2016

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

University Tun Hossein Dan Malaysia

CONFIDENTIAL

BWM20403

Q1 (a) Find the slope of the tangent line of the curve that is intersecting of the surface $z = x^2 - y^2$ and the plane x = 2, at the point (2,1,3).

(3 marks)

- (b) Given formula $i = \frac{V}{R}$. From experiment, we obtained V = 250 volt and R = 50 ohm.
 - (i) Find the maximum error in calculating *i* if the error of value voltage, V is 1 volt and resistance, R is 0.5 ohm.
 - (ii) Find the maximum percentage of error in calculating the *i* if the maximum possible error of value voltage, V and resistance, R is 2% and 1%, respectively.

(12 marks)

- (c) Find the local extremum of the function $f(x, y) = xy^2 6x^2 3y^2$. (10 marks)
- Q2 (a) By using double integrals, find the volume of the solid enclosed by planes $y = \sqrt{x}$ and z = 1 x, in the first octant. (5 mark)
 - (b) (i) By changing to cylindrical coordinates, evaluate $\int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{0}^{\sqrt{16-x^2-y^2}} z dz dx dy$ (ii) By using orderical and if the following spherical and if the
 - (ii) By using spherical coordinates, find the volume of the solid bounded above by sphere $x^2 + y^2 + z^2 = z$ and below by cone $z = \sqrt{x^2 + y^2}$.

(12 marks)

- (c) A lamina which has density function $\rho(x, y) = y$ occupies the region bounded by $y = e^x$, y = 0, x = 0 and x = 1. Find:
 - (i) its mass by using formula, $m = \iint_R \rho(x, y) dA$.
 - (ii) its coordinate \overline{y} of its center of mass.

(8 marks)

- Q3 (a) Compute the curl of the vector field $\mathbf{F}(x, y, z) = e^{x+y}\mathbf{i} + \sin y \mathbf{j} + \cos^2 z \mathbf{k}$. (3 marks)
 - Use Green's Theorem to evaluate the line integral $\oint_C (x^2 y) dx + x^2 dy$ where C is the boundary of the region between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ oriented counterclockwise. (10 marks)

- (c) Given the force field $\mathbf{F}(x, y, z) = y\mathbf{i} + (x + 2y)\mathbf{j}$
 - (i) Show that **F** is a conservative force field.

(3 mark)

(ii) Find a potential function ϕ such that $\mathbf{F} = \nabla \phi$.

(5 marks)

(iii) Hence, evaluate the work done by the force field \mathbf{F} on a particle that moves along the curve C, where C is the upper semicircle that starts from (0, 1) to (1, 0).

(4 marks)

Q4 (a) State the Divergence Theorem and Stokes' Theorem.

(4 marks)

- (b) If σ is the surface of sphere $x^2 + y^2 + z^2 = 4$ and $\mathbf{F}(x, y, z) = 7x\mathbf{i} z\mathbf{k}$:
 - (i) Find the divergence of F.

(3 marks)

(ii) Use Gauss's Theorem to evaluate $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} dS$

(8 marks)

(c) Use the Stokes' Theorem to find the work performed by the force field $\mathbf{F}(x, y, z) = e^z \mathbf{i} + e^z \sin y \mathbf{j} + e^z \cos y \mathbf{k}$ on a particle that oriented upward around the plane $z = y^2$ in the domain of $0 \le x \le 4$ and $0 \le y \le 2$.

(10 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2015/2016 : ENGINEERING **COURSE NAME**

MATHEMATICS III

PROGRAMME: BEV, BEJ COURSE CODE: BWM20403

Second Derivative Test for Extreme of two variable functions

$$G(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^2$$

Case1: If G(a,b) > 0 and $f_{xx}(x,y) < 0$ then f has local maximum at (a,b)

Case 2: If G(a,b) > 0 and $f_{xx}(x,y) > 0$ then f has local minimum at (a,b)

Case3: If G(a,b) < 0 then f has a saddle point at (a,b)

Case 4: If G(a,b) = 0 then no conclusion can be made.

Polar coordinate

$$x = r \cos \theta$$
, $y = r \sin \theta$, $\theta = \tan^{-1}(y/x)$, and $\iint_R f(x, y) dA = \iint_R f(r, \theta) r dr d\theta$

Cylindrical coordinate

$$x = r \cos \theta, \ \ y = r \sin \theta, \ \ z = z \ \text{and} \ \ \iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r \, dz \, dr \, d\theta$$

Spherical coordinate

Spherical coordinate
$$x = \rho \sin \varphi \cos \theta, \quad y = \rho \sin \varphi \sin \theta, \quad z = \rho \cos \phi, \text{ then } x^2 + y^2 + z^2 = \rho^2, \text{ for } 0 \le \theta \le 2\pi,$$

$$0 \le \varphi \le \pi, \text{ and } \iiint\limits_G f(x, y, z) dV = \iiint\limits_G f(\rho, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

$$A = \iint_{R} dA$$

$$m = \iint_{R} \delta(x, y) dA$$
, where $\delta(x, y)$ is a density of lamina

$$V = \iint\limits_R f(x,y) \, dA$$

$$V = \iiint_{C} dV$$

$$m = \iiint_C \delta(x, y, z) dV$$

Formulas for curve in space

Let C is a smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, t is parameter, then

Arc length of *C* in the interval [a, b],
$$s = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt = \int_a^b \|\mathbf{r}'(t)\| dt$$

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2015/2016 COURSE NAME : ENGINEERING

MATHEMATICS III

PROGRAMME: BEV, BEJ COURSE CODE: BWM20403

FORMULAS

If f is a differentiable function of x, y and z, then the

Gradient of
$$f$$
, grad $f(x, y, z) = \nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$

Directional derivatives of f in the direction of a unit vector u, $D_{\mu}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$

If $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a vector field, then the

Divergence of
$$\mathbf{F}(x, y, z)$$
, div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

Curl of
$$\mathbf{F}(x, y, z)$$
, curl $\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial Z}\right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial Z}\right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$

F is conservative vector field if Curl of F = 0.

Line Integral

$$\int_{C} f(x, y, z) \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \, | \, r'(t) \, | \, dt$$

$$\int F \Box d\mathbf{r} = \int_{a}^{b} \langle M, N, P \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle dt$$

Green's Theorem oriented counterclock-wise

$$\iint_{C} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Surface Integral

Let S be a surface with equation z = g(x, y) and let R be its projection on the xy-plane.

$$\iint_{S} f(x, y, z) dS = \iint_{R} f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iint_{R} \mathbf{F} \cdot \left[-\frac{\partial z}{\partial x} \mathbf{i} - \frac{\partial z}{\partial y} \mathbf{j} + \mathbf{k} \right] dA, \text{ oriented upward}$$

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iint_{R} \mathbf{F} \cdot \left[+ \frac{\partial z}{\partial x} \mathbf{i} + \frac{\partial z}{\partial y} \mathbf{j} - \mathbf{k} \right] dA, \text{ oriented downward}$$

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{G} \nabla \cdot \mathbf{F} \ dV$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$