

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2016/2017**

COURSE NAME

: ELECTRONICS I

COURSE CODE

: BWC 10703

PROGRAMME CODE : BWC

EXAMINATION DATE : JUNE 2017

DURATION

3 HOURS

INSTRUCTION

ANSWERS ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) Describe Kirchoff's Voltage Law (2 marks) (b) As to Figure Q1(b) is considered, determine V_2 using KVL (ii) calculate I (iii) find R_1 and R_3 (8 marks) (c) For the network of Figure Q1(c), by using voltage divider rule calculate V_{ab} (i) (ii) determine V_b (iii) calculate V_c (10 marks) **O2** (a) State the The'venin's Theorem (2 marks) (b) Find the The'venin equivalent circuit for in the shaded area of the network in Figure Q2(b) (10 marks) What is a semiconductor? How it can be compared with a conductor and an (c) (i) Describe forward and reverse biased of a diode (ii) [Diagrams might help in these questions] (8 marks) Q3 Figure Q3 shows the full wave rectifier circuit. T_1 is a step down transformer, which provides the secondary voltage. This transformer secondary is called as center tapped. In this figure, each half of the secondary has a voltage of 15 V_{ac} , which is one half the total secondary voltages, V_S , of 30 V_{ac} . The voltage for the top half of the secondary is designated V_1 , whereas the voltage for the bottom half of the secondary is designated V_2 . Analyze; (a) top half of secondary voltage V_{I} , (6 marks) TERBUKA bottom half of secondary voltage, V_2 , (b) (2 marks) (c) output voltage produced when D_1 is conducted. (4 marks) (d) output voltage produced when D_2 is conducted. (2 marks)

CONFIDENTIAL

BWD 10703

(e)	the combination output voltage produced by D_1 and D_2 and value of I_L .	
		(6 marks)

Q4 (a) Explain the function of emitter and collector regions in a transistor.

(2 marks)

(b) For the circuit shown in **Figure Q4(b)**, calculate the value for V_B , V_E , I_C , V_{CE} , $I_{C(sat)}$ and $V_{CE(off)}$. Then, construct a dc load line showing the value of $I_{C(sat)}$, $V_{CE(off)}$, I_{CQ} and V_{CEQ} .

(18 marks)

- **Q5** (a) Draw the schematic symbol of JFETs
 - (i) n-channel symbol
 - (ii) offset-gate symbol
 - (iii) p-channel symbol

(6 marks)

(b) Assume that the JFET circuit in **Figure Q5(b)** is to be mass produced. The JFET has the following parameters:

<u>Parameter</u>	<u>Minimum</u>	<u>Maximum</u>
I_{DSS}	2 mA	20 mA
$V_{GS(off)}$	-2 V	-8 V

Calculate the minimum and maximum value for I_D and V_{DS} if $V_{GS} = -1.5$ V for the range of JFET parameters shown and conclude the finding.

(14 marks)

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2016/2017 COURSE NAME : ELECTRONICS I

FCTRONICS I PROGRAMME COL

PROGRAMME CODE : BWC COURSE CODE : BWC 10703

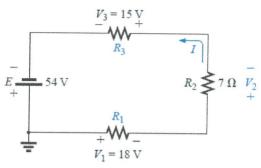


Figure Q1(b)

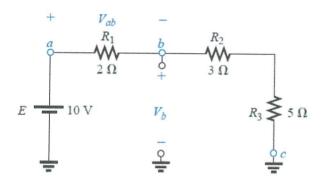


Figure Q1(c)

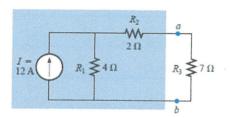
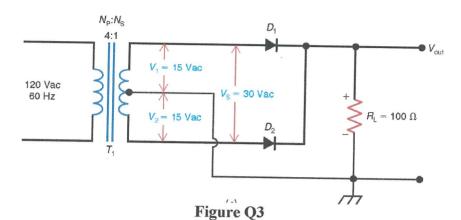


Figure Q2(b)

. H.E. NGOZE ELECTIC GEL. "NE EGG Parevacen Lauren Fakulti Sair et Tearre ugenar Hombanguran Jusar Universit Fer Hugseyn Fono Mwaresto


FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2016/2017 **COURSE NAME**

: ELECTRONICS I

PROGRAMME CODE: BWC

COURSE CODE : BWC 10703

 $+V_{\rm CC} = 18 \text{ V}$ $R_{\rm C}=1.5~{\rm k}\Omega$ $R_1 = 33 \text{ k}\Omega$ $\beta_{\rm dc}=200$ $R_2 = 5.6 \text{ k}\Omega$ $R_{\rm F}=390~\Omega$

Figure Q4(b)

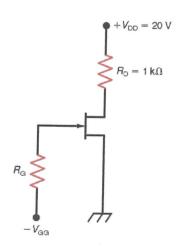


Figure Q5(b)

Челзуасть Кангр Рахил Sains, Тетельку овы Ремациориль Тичас Прочесть Тет Ньзав Сент Мацията