

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2016/2017

COURSE NAME

FOOD CHEMISTRY

COURSE CODE

BWD 10603

PROGRAMME CODE :

BWD

EXAMINATION DATE:

JUNE 2017

DURATION

3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) Define what food additives are and explain the type of food additives. (4 marks)

- (b) In an industrial internship program, Daniel was required to look into new food additives to enhance their new launched product, 'choco-pops'. List SIX (6) food additives in confectionaries. List out their chemical names and function descriptions.

 (12 marks)
- Q2 (a) Discuss the relationship between water activity, the safety and wholesomeness of a food. Give **ONE** (1) example of food to support the argument. (4 marks)
 - (b) Draw **TWO** (2) conclusions from the relationship in **Figure Q2**. (4 marks)
 - (c) The inversion of sucrose according to the reaction, $C_{12}H_{22}O_{11} + H_2O \rightarrow 2C_6H_{12}O_6$ was observed at 25 °C and the initial concentration of sucrose was 1.0023 moles per liter, Calculate the time taken when the concentration has been reduced to 18%. Rate constant =1.8×10⁻⁴ s⁻¹.
- Q3 (a) (i) Draw phenylalanine (phe) structure in acid, base and neutral medium. (6 marks)
 - (ii) Create a dipeptide bond when phenylalanine are linked to form phe-phe protein.

 (4 marks)
 - (b) Evaluate the data in **Table Q3** and discuss at least **TWO (2)** important conclusions. (5 marks)
- Q4 (a) Describe the difference between aldose and ketose sugars. Use 6-C sugar structure to aid the description.

(4 marks)

(ii) From **Q4**(a)(i), show the chiral-carbon on both aldose and ketose sugar structures.

(4 marks)

(b) Explain the brief mechanism in Benedict test for reducing sugar.

(6 marks)

(c) Differentiate Maillard Browning and caramelization occuring in sugar.

(6 marks)

TERBUKA

Q5 (a) Describe the differences between saturated and conjugated unsaturated fat.

(3 marks)

(b) Malaysia vegetable cooking oil suppliers are exporting Palm Olein to all over Africa, Far East and Middle East. The vegetable cooking oil from Malaysia must follow certain specifications. Discuss **FIVE** (5) properties (physical and chemical) of any vegetable oil available in Malaysia.

(10 marks)

Q6 (a) Discuss the fat and water soluble vitamin and describe their

(i) functions in our body.

(6 marks)

(ii) food sources.

(6 marks)

(b) Some minerals are needed in our body in large quantities and some are needed in trace amount.

(i) Discuss the type of minerals that your body needs in relatively small amounts (4 marks)

(ii) Discover the effect of deficiencies of (b)(i).

(4 marks)

TERBUKA

-END OF QUESTIONS-

CONFIDENTIAL	ı BWL) 10603	
	FINAL .	<i>EXAMINATION</i>	
SEMESTER / SESSION: SE	EM II / 2016/2017	PROGRAMME: BW	D
COURSE: FOOD CHEM	MISTRY	COURSE CODE: BWD	10603
	Amin	o Acids	
	но	NH ₂	
	Gen	eral Form	
HO E CH ₃	NH ₂	HO NH ₂ NH ₂	HO HO OH
Alanine (Ala, A)	Arginine (Arg, R)	Asparagine (Asn, N)	Aspartic Acid (Asp, D)
HO NH2 SH O Cysteine (Cys, C)	HO HO OH OH OH Glutamic Acid (Glu, E)	HO NH2 NH2 NH2 O O Glutamine (Gln, Q)	HO HH H H
HO NH2 NH	HO HO CH ₃	HO HO CH ₃	NH ₂
Histidine (His, H)	Isoleucine (IIe, I)	Leucine (Leu, L)	Lysine (Lys, K)
HO HO S CH ₃ Methionine (Met, M)	TERBUK NH2 HO H Phenylanaline (Phe, F)	HO HO HO Proline (Pro, P)	HO OH OH Serine (Ser, S)
O H OH	NH ₂	HO NH ₂ OH	HO CH ₃
Threonine (Thr, T)	Tryptophan (Trp, W)	Tyrosine (Tyr, Y)	Valine (Val, V)

FINAL EXAMINATION			
SEMESTER / SESSION: SEM II / 2016/2017	PROGRAMME: BWD		
COURSE: FOOD CHEMISTRY	COURSE CODE: BWD 10603		

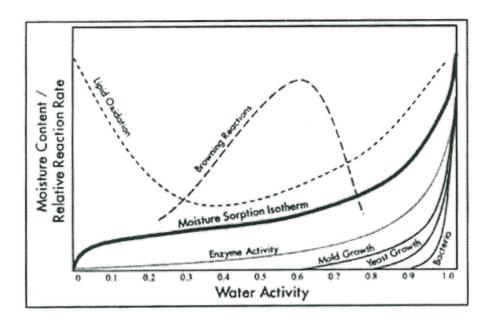


Figure Q2

Table Q3

Product	Protein (g/100 g)	
Meat: beef	16.5	
Fish: cod	17.6	
Peas	6.3	
Beans: dry, raw	22.3	
Beans: cooked	7.8	

