

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2016/2017

COURSE NAME

MATHEMATICS FOR

ENGINEERING TECHNOLOGY II

COURSE CODE

BWM 12303

PROGRAMME CODE :

BNA / BNB / BNC / BND / BNE / BNF /

BNG / BNH / BNK / BNL / BNM / BNN

EXAMINATION DATE

JUNE 2017

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

Q1 (a) Find a general solution for the first order linear differential equation

$$\frac{dy}{dx}\sin(\pi x) = y\cos(\pi x).$$

(8 marks)

(b) Solve the following initial-value problem (IVP)

$$xy\frac{dy}{dx} = x^2 + y^2, \qquad y(1) = 1.$$

(8 marks)

- (c) A cup of coffee is removed from a microwave oven with a temperature of 80°C and allowed to cool in a room with a temperature of 25°C. Five minutes later, the temperature of the coffee is 60°C.
 - (i) Find the constant k for the cooling process. Given that the Newton's law of cooling is

$$\frac{dT}{dt} = k(T - T_O),$$

where T_O is the temperature of the surrounding medium, k is a constant and t is the time in minutes.

(6 marks)

(ii) Write down the temperature equation of the coffee, for $t \ge 0$.

(1 mark)

(iii) When does the temperature of the coffee reach 50°C?

(2 marks)

Q2 (a) Using variation of parameters method, solve the following differential equation

$$y'' - 6y' + 18y = e^{3x} \csc(3x)$$
.

(15 marks)

(b) The equation of motion is governed by

TERBUKA

$$\ddot{x} + \frac{a}{M}\dot{x} + \frac{k}{M}x = \frac{F(t)}{M},$$

where k is a spring constant, M is a mass, a is resistance from the surrounding medium and F(t) is an applied force. Suppose that a mass of 2 kg is suspended from a spring with a known spring constant of 8 N/m and allowed to come to rest. It is then set in motion by giving it an initial velocity of 100 cm/sec. Find the position of the mass at any time if there is no external force and no air resistance.

(10 marks)

CONFIDENTIAL

BWM 12303

Q3 (a) Given

$$f(t) = \begin{cases} t^2, & 0 \le t < 3, \\ 5t, & t \ge 3. \end{cases}$$

Sketch f(t) and describe the function in terms of unit step function.

(5 marks)

(b) The Laplace transform for an unknown function g(t) is given as

$$\mathcal{L}\left\{g\left(t\right)\right\} = \frac{2}{s^2 + s - 6}.$$

Find the inverse Laplace transform by using **convolution theorem** in order to determine the function g(t).

(8 marks)

(c) (i) Express

$$\frac{1}{(s-1)(s-2)^2}$$

in partial fractions and show that

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)^2}\right\} = e^t - e^{2t} + te^{2t}.$$

(7 marks)

(ii) Use the result in (c)(i) to solve the following differential equation

$$y' - y = te^{2t},$$

which satisfies the initial condition of y(0) = 1.

(5 marks)

Q4 (a) Consider the following initial-value problem (IVP)

$$(1+x^2)\frac{dy}{dx} - xy = 0$$
, $y(2) = 5$.

Solve the IVP for $2 \le x \le 2.2$ and h = 0.1 by using fourth-order Runge-Kutta method.

(10 marks)

(b) Given the boundary-value problem (BVP)

$$y'' + 4y = \sin x, \quad 0 \le x \le 1,$$

with conditions y(0) = 0 and y(1) = 0. Solve the BVP by using finite-difference method with $\Delta x = h = 0.25$.

(15 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2016/2017

PROGRAMME CODE: BNA/BNB/BNC/BND/BNE/BNF/BNG/BNH/BNK/BNL/BNM/BNN

COURSE NAME

: MATHEMATICS FOR

ENGINEERING TECHNOLOGY II

COURSE CODE

: BWM 12303

FORMULA

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Characteristic equation: $am^2 + bm + c = 0$.					
Case	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$			

The method of undetermined coefficients

For non-homogeneous second order differential equation ay'' + by' + cy = f(x), the particular solution is given by $y_p(x)$:

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})$
$Ce^{\alpha x}$	$x'(Pe^{ax})$
$C\cos\beta x$ or $C\sin\beta x$	$x^r(P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}$
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})\cos\beta x +$
$\int_{a}^{a} \sin \beta x$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})\sin \beta x$
$Ce^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^r e^{\alpha x} (P\cos\beta x + Q\sin\beta x)$
$P_n(x)e^{\alpha x} \begin{cases} \cos \beta x \\ \sin \beta x \end{cases}$	$x^{r}(B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}\cos\beta x +$
$\int_{0}^{T_{n}(x)\epsilon} \sin \beta x$	$x^{r}(C_{n}x^{n} + C_{n-1}x^{n-1} + \dots + C_{1}x + C_{0})e^{\alpha x}\sin\beta x$

Note: r is the least non-negative integer (r = 0, 1, or 2) which determine such that there is no terms in particular integral $y_p(x)$ corresponds to the complementary function $y_c(x)$.

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2016/2017

PROGRAMME CODE: BNA/BNB/ BNC / BND / BNE / BNF / BNG / BNH / BNK / BNL / BNM / BNN

COURSE NAME

: MATHEMATICS FOR

ENGINEERING TECHNOLOGY II

COURSE CODE

: BWM 12303

The method of variation of parameters

If the solution of the homogeneous equation ay'' + by' + cy = 0 is $y_c = Ay_1 + By_2$, then the particular solution for ay'' + by' + cy = f(x) is

$$y = uy_1 + vy_2,$$

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
,

where
$$u = -\int \frac{y_2 f(x)}{aW} dx + A$$
, $v = \int \frac{y_1 f(x)}{aW} dx + B$ and $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$

Laplace Transform

$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$					
f(t)	F(s)	f(t)	F(s)		
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$		
e ^{at}	$\frac{1}{s-a}$	f(t-a)H(t-a)	$e^{-as}F(s)$		
sin at	$\frac{a}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}		
cos at	$\frac{s}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$		
sinh <i>at</i>	$\frac{a}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$		
cosh at	$\frac{s}{s^2 - a^2}$	<i>y</i> (<i>t</i>)	Y(s)		
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y'(t)	sY(s)-y(0)		
$e^{at}f(t)$	F(s-a)	y''(t)	$s^2Y(s) - sy(0) - y'(0)$		
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$				

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2016/2017

PROGRAMME CODE: BNA/BNB/ BNC / BND / BNE / BNF / BNG / BNH / BNK / BNL / BNM / BNN

COURSE NAME

: MATHEMATICS FOR

ENGINEERING TECHNOLOGY II

COURSE CODE

: BWM 12303

Fourth-order Runge-Kutta method

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where
$$k_1 = h f(x_i, y_i)$$

$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$k_4 = h f(x_i + h, y_i + k_3)$$

Finite difference method

$$y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h}$$

$$y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h}$$
 , $y_i'' \approx \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$

