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Q1 (a) State the differences between round-off error and truncation error. Give an example
for each.
(6 marks)

;s . N . 1 ;
(b) Given a nonlinear function f(x)=— —a.where « is a constant.
X

(1) Show that the Newton-Raphson iteration scheme for the function above is
given by
Xpo =X (2—ax, ).
(4 marks)

(ii) Hence, find the root of f(x) if @ =3 and start with x, =0.3.
(3 marks)

(c) A biologist has placed three strains of bacteria (denoted I, I and III) in a test tube,
where they will feed with three different food sources (A, B and C). Each day 700
units of A, 400 units of B and 500 units of C are placed in the test tube. Each bacteria
consumes a certain number of units of each food per day, as shown in Table Q1(c)

below.
Table Q1(c)
Bacteria Strain Bacteria Strain Bacteria Strain
1 11 111
Food A 0 ] 2
Food B 5 1 0
Food C 1 3 1
(i) Form a system of linear equations based on the above problem.

(4 marks)

(i1) Hence. determine the number of bacteria of each strain that can coexist in the
test tube and consume all of the food by using Gauss-Seidel iteration method.

(8 marks)

Q2 (a) Construct the natural cubic spline S(x) using the following data given in Table Q2(a).

Table Q2(a)

X -2 | =1 0

E
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(12 marks)

r2
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Q3

(b)

(¢)

(a)

(b)

By expanding f(x+h) in a Taylor series up to three terms, deduce an expression for

the truncation error ¢’ in the first derivative 2-point forward difference formula,

fx+h)—f(x), ¢
A o s e,

“(x) =
S h

(4 marks)

A point P is moving along the curve whose equation is y = t* +17 . Calculate the
velocity and the acceleration of P at ¢ =3.35s, with /1 = 0.05 using

(i) 3-point central difference formula, and
(5 marks)

(ii) 5-point difference formula.
(4 marks)

Consider a symmetric matrix

4 3 0
A=|3 4 -1
0 -1 4
(i) Determine the interval of which the eigenvalues of matrix 4 above are

contained by using Gerschgorin’s theorem.
(7 marks)

(ii) Find the dominant eigenvalue and corresponding eigenvector for matrix 4 by

using power method with v = (11 O)T and &€ =0.005.
(5 marks)

(iii)  Hence, find the smallest eigenvalue (in absolute value) and corresponding
eigenvector for matrix A4 by using shifted power method with

v =(1 1 1)" and £=0.005.
(6 marks)

A basketball player makes a successful shot from the free throw line. Suppose that the
path of the ball from the moment of release to the moment it enters the hoop is
described by

y=215+2.09x-041x>, 0<x<3.6

where x is the horizontal distance (in meters) from the point of release, and y is the
vertical distance (in meters) above the floor. Approximate the distance of the ball
travels from the moment of release to the moment it enters the hoop, by using the
appropriate Simpson’s rule with #1=0.4.

(V5]
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Q4 (a)

(c)

[ Hint: Arc length of the curve, L = [l+ 4 dx |
. A\ dx

(7 marks)

Given an initial value problem
v =15x"*, y(0)=0.
(i) Show that Euler’s method fails to approximate the solution of the problem and
justify your answer.

(5 marks)

(i1) Suggest one way to make it possible to solve the initial value problem.

(1 mark)
Consider an ordinary differential equation
5. dy c
(1+x")=——axy =0 over x =2(0.25)2.5,
dx

with initial condition y(2)=35.
(1) Solve the initial value problem using fourth-order Runge-Kutta method.

(6 marks)

(ii) Hence, calculate the absolute error for each approximation if the exact solution

for the differential equation is given by y(x) =+/5(1+x%) .
(3 marks)

Given a boundary-value problem,

4
ytxy=x'-—, 1=2x<£2,
X

with boundary conditions, 4y(1) + (1) =0, and 33(2) +2y'(2) = 0. Derive a system
of linear equations in matrix-vector form for the problem with /1= Ax=0.2 using

finite-difference method. (Note: Do not solve the problem)
(10 marks)

- END OF QUESTIONS -
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Eigen value

Gerschgorin’s theorem:

n
r;zZla

J*®i

Dl

={zeCi|z—-a,|sr},

FORMULA
Nonlinear equations
Newton-Raphson method: x,,, = x, — j.'(x, ) ,i=0,1, 2,
J(x)
System of linear equations
-1
b= ax!"" - Za”t‘“
Gauss-Seidel iteration method: x'“" = = =  Vi=1,2,3,.,n
a”
Interpolation
Cubic spline:
m 1, A i m '
S(x — P+ x—x ) +| 2 h]{x r+( skl p (x-x
(x) = 6hk Xpw —X) n( ‘) h Jha ) i 5 ‘)
where £ =0,1,2,....n—1
d, - fx ; /AJ k=012,..,n-1
hy,
b, =6(d,,, —d;), k=0]12,..,n-2
ny =0
m, =0
hk’"k +2(h£. +hk+|)’”fi+| +hkvln’k+2 :bk-' k:0.1,2 ..... n—2

A e UD, tork=12,...n

i=]
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1 A
Power Method: p = gpt®) k=0,1,2,.....
'r"lc+l
Shifted Power Method: A= A= Lmml U I Y | Largest

Numerical differentiation and integration

Differentiation:

First derivatives:
JSx+h) - f(x—h)
2h
—f(x+2h)+8f(x+h) —-8f(x=h)+ f(x—2h)
124

3-point central difference: f'(x)=

5-point difference: f'(x) =

Second derivatives:

S(x+h)=2f(x)+f(x—h)

W
—F(x+2h) +16 £ (x +h) =30 F(x)+ 167 (x — h) — f(x — 2h)
124°

3-point central difference: f"(x) =

5-point difference: f"(x) =

Integration:

n-l n=2
Simpson’s % rule: Ih_f(.\')civ = g o+ + 42]; +2 Z I
“ i=1 1=2

1odd reven

. .3
Simpson’s s rule:

j:f(x)ct\- ~ »gh[j;, +f, HAL F o Sy F Lt S L) UL bt S+ fos)]
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Ordinary differential equations

Initial value problems:

Euler’s Method: v, =¥, +h f(x;,¥,)

Fourth-order Runge-Kutta Method:  y,

1+l

=¥, +é(k[ + 2K, +2k; +4;)

; k
where & =hf(x,, v,) ks = hf(x, 4.%’1 y, + 7?)

k-‘ = hf(\; + 'gf Vi +£,)2') k4 = hf(li = h, Vi '+‘k3)

Boundary value problems:

e e ] ] P28 ¥ i
Finite difference method: y, Vo=
o 2]? o h‘
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