

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2018/2019**

COURSENAME

: PARTIAL DIFFERENTIAL EQUATION

COURSECODE

: BWA 30303

PROGRAMME CODE : BWA

EXAMINATION DATE : DECEMBER 2018 / JANUARY 2019

DURATION

: 3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

CONFIDENTIAL

BWA 30303

- Q1 (a) Solve the equation $u_x + 2xy^2u_y = 0$. Sketch some of the characteristic curves. (4 marks)
 - (b) Use the coordinate method to solve the equation

$$u_x + 2u_y + (2x - y)u = 0.$$

(7 marks)

(c) Solve the initial value problem for the transport equation with damping

$$u_t - 4u_x + u = 0, \quad t > 0, \quad x \in \mathbb{R}, \quad u(0, x) = e^{-x^2}.$$

Sketch the graph of the solution at t = 3.

(Hint: Multiply by e^t and consider the problem solved by $v = e^t u$)

(8 marks)

Q2 (a) What is the type of the equation

$$u_{xx} - 4u_{xy} + 4u_{yy} = 0$$
?

Show by direct substituition that u(x,y) = f(y+2x) + xg(y+2x) is a solution for arbitrary functions f and g.

(5 marks)

(b) Reduce the elliptic equation

$$u_{xx} + 3u_{yy} - 2u_x + 24u_y + 5u = 0$$

to the form $v_{xx} + v_{yy} + cv = 0$ by a change of dependent variables $u = ve^{\alpha x + \beta y}$ and then a change of scale $x = \mu \zeta$, $y = \gamma \eta$ where μ and γ are constants.

(12 marks)

(c) Construct and sketch the graph of the even and odd 2π -periodic extensions of the function f(x)=1-x. What are their Fourier series? Discuss convergence of each. (13 marks)

Q3 (a) Find a formal solution of a vibrating string with fixed ends:

$$u_{tt} - c^2 u_{xx} = 0,$$
 $0 < x < L, t > 0$
 $u(0,t) = u(L,t) = 0,$ $t \ge 0$
 $u(x,0) = f(x), u_t(x,0) = g(x), 0 \le x \le L$

using the separation of variables method.

(12 marks)

(b) Prove that the solution in Q3 (a) can be represented as a superposition of a forward and a backward wave.

(4 marks)

Q4 Given the heat equation

$$\begin{split} & u_t = k u_{xx} \ \text{ for } \ 0 < x < L, \ t > 0 \,, \\ & u\left(0,t\right) = u_x\left(L,t\right) = 0 \ \text{ for } \ t > 0 \,, \\ & u\left(x,0\right) = f\left(x\right) \ \text{ for } \ 0 < x < L \,, \end{split}$$

describe heat conduction in a bar of length L with the left end kept at temperature zero but with an insulation condition on the right end. Using separation of variables show that the problem to solve for X is

$$X'' - pX = 0; X(0) = X'(L) = 0.$$

By considering case on p, show that this problem has eigenvalues

$$p_n = -\frac{(2n-1)^2 \pi^2}{4L^2}$$

for n = 1, 2, ... Show that for n = 1, 2, ..., the functions

$$u_n(x,t) = b_n \sin\left(\frac{(2n-1)\pi x}{2L}\right) e^{-(2n-1)^2 \pi^2 kt/4L^2}$$

are solutions of the heat equation satisfying both boundary conditions. To satisfy the initial condition, attempt a superposition

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{(2n-1)\pi x}{2L}\right) e^{-(2n-1)^2 \pi^2 kt/4L^2}.$$

Require that

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{(2n-1)\pi x}{2L}\right).$$

TERBUKA

Derive a formula for the b_n 's by reasoning informally as in the problem with one radiating end.

(15 marks)

Q5 The temperature distribution, $u(r,\theta)$ in a circular metal disc of radius 1 that has its top and bottom insulated is described by equation

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
, $0 \le r < 1$, $0 < \theta < 2\pi$.

(a) Show that the general solution of Laplace equation is

$$u(r,\theta) = \frac{A_0}{2} + \sum_{n=1}^{\infty} r^n \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right].$$
(15 marks)

(b) Given

$$u_r\left(1,\theta\right) = \begin{cases} 1, & 0 < \theta < \pi, \\ -1, & \pi < \theta < 2\pi. \end{cases}$$

Show that the solution of Laplace equation is

$$u(r,\theta) = \frac{A_0}{2} + \sum_{n=1}^{\infty} r^n \left(\frac{1}{\pi n}\right) \left[-\frac{2}{n}\cos(n\pi) + \frac{2}{n}\right] \sin(n\theta).$$
 (5 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2018/2019 COURSE NAME: PARTIAL DIFFERENTIAL

PARTIAL DIFFERENTIA EQUATION PROGRAMME CODE : BWA

COURSE CODE

: BWA 30303

Formulae

Fourier Series:
$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos\left(\frac{n\pi x}{\ell}\right) + b_n \sin\left(\frac{n\pi x}{\ell}\right) \right\},$$
 where $a_0 = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) dx$,
$$a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad n = 1, 2, 3, ...,$$

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx, \quad n = 1, 2, 3, ...$$

Half Range Cosine Series:
$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right)$$
, where $a_0 = \frac{2}{\ell} \int_0^{\ell} f(x) dx$, $a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx$, $n = 1, 2, 3, ...$

Half Range Sine Series:
$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right)$$
,
where $b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$, $n = 1, 2, 3, ...$

