

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

TERBUKA

COURSE NAME

PHYSICS FOR ENGINEERING

TECHNOLOGY

COURSE CODE

BWM 12603

PROGRAMME CODE

BNA/BNB/BNC/BND/BNN

EXAMINATION DATE

DECEMBER 2018 / JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS IN

PART A AND SELECT **THREE (3)**

QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

.

:

PART A

Q1 (a) Define tranverse waves.

(2 marks)

- (b) A guitar's E-string has a length of 65 cm and is stretched to a tension of 82 N. If it vibrates with a fundamental frequency of 329.64 Hz, what is the mass of the string?

 (4 marks)
- (c) Sam, a train engineer, blows a whistle that has a frequency of 4.0×10^2 Hz as the train approaches a station. If the speed of the train is 25 ms^{-1} , what frequency will be heard by a person at the station? Given: Speed of sound in air is 340 ms^{-1} .

(4 marks)

(d) A travelling wave is described by the equation:

$$y(x, t) = (0.003) \cos(20 x + 200 t)$$

where y and x are measured in meters and t in seconds.

Find:

- (i) Direction of the wave travelling.
- (ii) Angular wave number and wavelength.
- (iii) Angular frequency and frequency.
- (iv) Period and wave speed.
- (v) Amplitude.

(10 marks)

(2 marks)

Q2 (a) Define specific heat capacity.

(b) How much heat must be absorbed by ice of mass m = 720 g at -10 °C to take it to liquid state at 15°C?

(Given: specific heat of ice: 2220 J kg⁻¹ K⁻¹, specific heat of liquid: 4190 J kg⁻¹ K⁻¹ and heat of fusion: 333 kJ kg⁻¹)

(8 marks)

(c) Describe heat transfer process through conduction.

(4 marks)

(d) Figure Q2(d) shows the cross section of a wall made of white pine of thickness L_a and brick of thickness $L_d = 2.0 L_a$, sandwiching two layers of unknown material with identical thickness and thermal conductivities. The thermal conductivities of the pine is k_a and that of the brick is $k_d = 5.0 k_a$. The face area of the wall is unknown. Thermal conduction through the wall has reached the steady state. The only known interface temperature are $T_1 = 25$ °C, $T_2 = 20$ °C and $T_5 = -10$ °C. Calculate the interface temperature T_4 .

(6 marks)

PART B

Q3 (a) State ONE (1) difference between scalar and vector quantity. Give ONE (1) example for each.

(4 marks)

(b) Convert:

(i) $0.35 \text{ mm}^2 \text{ to m}^2$

(2 marks)

(ii) $0.000008 \text{ m to } \mu\text{m}$

(2 marks)

(iii) 39 kgm⁻³ to gcm⁻³

(2 marks)

(c) A certain physical quantity, R, is calculated using the formula: $R = 4a^2 (b - c)$ where a, b, and c are distances. What is the SI unit for R?

(2 marks)

(d) Given the resultant vector of the coplanar forces system as shown in **Figure Q3(d)**, F_4 has components $F_{4X} = 80$ N and $F_{4Y} = 90$ N. Determine the magnitude and direction of vector F_3 .

(8 marks)

Q4 (a) State Newton's First Law of Motion

(2 marks)

(b) Figure Q4(b) shows a force, F = 28 N applies on a 0.95 kg block at rest on a frictionless surface. Calculate acceleration of the block.

(3 marks)

(c) State one of the condition for an object to be in static equilibrium.

(1 mark)

(d) **Figure Q4(d)** shows two cables T_1 and T_2 used to hang an object, W of weight 600 N and T_2 makes an angle of 35° with vertical wall. Determine the tension in both cables if the system is in equilibrium.

(5 marks)

(e) In **Figure Q4(e)**, a 100N box (initially at rest) is pushed 10.0 m up a rough ramp by a horizontal applied force of 150 N. The ramp is inclined at an angle of 25° and the coefficient of kinetic friction between the box and the ramp is 0.1. Compute the net work done on the box.

(5 marks)

(f) A ball of mass 5 kg rolls on the smooth surface as shown in **Figure Q4(f)**. If the ball starts from rest at point A, calculate its speed at point B.

(4 marks)

Q5 (a) State the Archimedes' principle.

(2 marks)

(b) (i) A students measures the mass of five steel nuts be 96.2 g. The nuts displace 13 ml of water. Calculate the density of the steel in the nuts.

(4 marks)

(ii) A reservoir has a surface area of 50.0 km^2 and an average depth of 40.0 m. What mass of water is held behind the dam? (Given: Densities of various substances is $1.000 \times 10^3 \text{ kg/m}^3$)

(4 marks)

(c) Calculate the buoyant force on 10 000 metric tons $(1.00 \times 10^7 \text{kg})$ of solid steel completely submerged in water and compare this with the steel's weight. (Given: Density of steel, ρ_{steel} : 7.8×10^3 kg/m³ and density of water, ρ_{water} : 1.0×10^3 kg/m³)

(6 marks)

(ii) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10^5 m³ of water?

(4 marks)

Q6 (a) The main span of San Francisco's Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperature ranging from -15 °C to 40 °C. What is its change in length between these temperatures? Assume that the bridge is made entirely of steel, where the coefficient of linear expansion, α for steel is 12×10^{-6} °C⁻¹.

(4 marks)

(b) Prove $\Delta V = 3\alpha V \Delta T$.

(8 marks)

Consider a 2 m long brass rod and a 1 m long aluminum rod. When the temperature is 22 °C, there is a gap of 1.0×10^{-3} m separating their ends. No expansion is possible at the other end of their rod. At what temperature will the two bars touch? (Given: coefficient linear expansion of brass, $\alpha_{brass} = 19 \times 10^{-6}$ °C⁻¹ and coefficient linear expansion of aluminium, $\alpha_{aluminium} = 23 \times 10^{-6}$ °C⁻¹)

(8 marks)

- END OF QUESTIONS -

CONFIDENTIAL

LKDUR

FINAL EXAMINATION

SEMESTER / SESSION : SEM I/ 2018/2019

PROGRAMME CODE: BNA/BNB/BNC/

BND/BNN

COURSE NAME

: PHYSICS FOR ENGINEERING

TECHNOLOGY

COURSE CODE

: BWM12603

Figure Q4(d)

Figure Q4(e)

Figure Q4(f)

