

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2019/2020**

COURSE NAME

: TECHNIQUES OF OPTIMIZATION II

COURSE CODE

: BWA 40703

PROGRAMME CODE : BWA

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 Consider the nonlinear optimization problem

Minimize $2x_1^2 + x_2^2 + (x_1 + x_2)^2 - 20x_1 - 16x_2$,

subject to

$$x_1 + x_2 \le 5$$
, $x_1 \ge 0$, $x_2 \ge 0$.

(a) Expand the penalty function, given that

$$P(x) = \frac{1}{2} \sum_{i=1}^{3} (\max[0, g_i(x)])^2.$$

(3 marks)

(b) Define the penalty objective function.

(3 marks)

(c) Show that the first-order necessary conditions are

$$6x_1 + 2x_2 - 20 + c(\max[0, x_1 + x_2 - 5]) - c(\max[0, -x_1]) = 0,$$

$$2x_1 + 4x_2 - 16 + c(\max[0, x_1 + x_2 - 5]) - c(\max[0, -x_2]) = 0.$$

(6 marks)

(d) Deduce the solution

$$x_1 = \frac{7c^2 + 33c + 36}{3c^2 + 14c + 15}$$
 and $x_2 = \frac{8c + 14}{3c + 5}$

as c approaches ∞ .

(8 marks)

Q2 Consider a constrained optimization problem

Minimize $x_1^2 + 2x_2^2$,

subject to

$$1 - x_1 - x_2 \le 0 \ .$$

The barrier function is defined by

$$B(x) = -\log(x_1 + x_2 - 1)$$
.

(a) Write an equivalent unconstrained problem.

(4 marks)

(b) Indicate that the first-order necessary conditions are given by

$$2x_1(x_1 + x_2 - 1) - \mu = 0,$$

$$4x_2(x_1 + x_2 - 1) - \mu = 0.$$

(6 marks)

(c) Prove that the solution for Q2 (b) is given by

$$x_1 = \frac{1 \pm \sqrt{1 + 3\mu}}{3}$$
 and $x_2 = \frac{1 \pm \sqrt{1 + 3\mu}}{6}$.

(10 marks)

CONFIDENTIAL

BWA 40703

Q3 Consider a nonlinear optimization problem

Minimize $2x_1^2 + x_2^2 - 2x_1x_2 - 4x_1 - 6x_2$,

subject to

$$\begin{aligned} x_1 + x_2 &\leq 8, \\ -x_1 + 2x_2 &\leq 10, \\ -x_1 &\leq 0, \\ -x_2 &\leq 0. \end{aligned}$$

(a) Obtain the coefficient matrix for the active constraints and the inactive constraints. The initial point is $x_1 = (0, 0)^T$.

(4 marks)

(b) Calculate the projection matrix, that is,

$$P = I - A_1^{\mathrm{T}} (A_1 A_1^{\mathrm{T}})^{-1} A_1.$$

(8 marks)

(c) Show that multiplier $u = (-4, -6)^T$, given that

$$u = -(A_1 A_1^T)^{-1} A_1 \nabla f(x_1).$$

(8 marks)

CONFIDENTIAL

BWA 40703

Q4 Assume that \mathbf{x}^* is a regular point, then there will be a corresponding Lagrange multiplier vector λ^* such that

$$\nabla f(\mathbf{x}^*) + (\boldsymbol{\lambda}^*)^{\mathrm{T}} \nabla \mathbf{h}(\mathbf{x}^*) = \mathbf{0},$$

and the Hessian of the Lagrangian

$$\mathbf{L}(\mathbf{x}^*) = \mathbf{F}(\mathbf{x}^*) + (\boldsymbol{\lambda}^*)^{\mathrm{T}} \mathbf{H}(\mathbf{x}^*)$$

must be positive semidefinite on the tangent subspace

$$M = \{\mathbf{x} : \nabla \mathbf{h}(\mathbf{x}^*) \cdot \mathbf{x} = \mathbf{0}\}.$$

(a) Show that the dual function ϕ has the gradient

$$\nabla \phi(\lambda) = \mathbf{h}(\mathbf{x}(\lambda))^{\mathrm{T}}.$$

(9 marks)

(b) Determine that the Hessian of the dual function is

$$\Phi(\lambda) = -\nabla h(x(\lambda)) L^{-1}(x(\lambda), \lambda) \nabla h(x(\lambda))^{T}.$$

(11 marks)

Q5 Assume that the management has decided to produce P = 6,000 units of a given product line consisting of three individual items. The allocation of the total quantity among the three items will be decided by the following mathematical model:

Minimize
$$C = \sum_{i=1}^{3} \left(h_i \frac{Q_i}{2} + S_i \frac{d_i}{Q_i} \right),$$

subject to

$$\sum_{i=1}^{3} Q_i = P,$$

where

 Q_i is the production quantity for item i (in units),

 h_i is the inventory holding cost for item i (in RM per month × unit),

 S_i is the setup cost for item i (in RM),

 d_i is the demand for item i (in units per month),

P is the total amount to be produced (in units).

(a) Indicate the equivalent unconstrained minimization problem.

(4 marks)

(b) Derive the first-order necessary conditions.

(4 marks)

(c) Show that the optimal production quantity for item i is

$$Q_i^* = \sqrt{\frac{2S_i d_i}{h_i + 2\lambda}} \ .$$

(3 marks)

(d) Evaluate the production quantity for i = 1, 2, 3, where the values of the parameters are listed below

$$\lambda = 1$$
, $h_1 = 1$, $h_2 = 1$, $h_3 = 2$, $S_1 = 100$, $S_2 = 50$, $S_3 = 400$,
$$d_1 = 20,000, d_2 = 40,000, d_3 = 40,000.$$
 (9 marks)

- END OF QUESTIONS -

CONFIDENTIAL