UNIVERSITI TUN HUSSEIN ONN MALAYSIA ## FINAL EXAMINATION SEMESTER I **SESSION 2019/2020** **COURSE NAME** : TECHNIQUES OF OPTIMIZATION II COURSE CODE : BWA 40703 PROGRAMME CODE : BWA EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020 DURATION : 3 HOURS INSTRUCTION : ANSWER ALL QUESTIONS THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES CONFIDENTIAL Q1 Consider the nonlinear optimization problem Minimize $2x_1^2 + x_2^2 + (x_1 + x_2)^2 - 20x_1 - 16x_2$, subject to $$x_1 + x_2 \le 5$$, $x_1 \ge 0$, $x_2 \ge 0$. (a) Expand the penalty function, given that $$P(x) = \frac{1}{2} \sum_{i=1}^{3} (\max[0, g_i(x)])^2.$$ (3 marks) (b) Define the penalty objective function. (3 marks) (c) Show that the first-order necessary conditions are $$6x_1 + 2x_2 - 20 + c(\max[0, x_1 + x_2 - 5]) - c(\max[0, -x_1]) = 0,$$ $$2x_1 + 4x_2 - 16 + c(\max[0, x_1 + x_2 - 5]) - c(\max[0, -x_2]) = 0.$$ (6 marks) (d) Deduce the solution $$x_1 = \frac{7c^2 + 33c + 36}{3c^2 + 14c + 15}$$ and $x_2 = \frac{8c + 14}{3c + 5}$ as c approaches ∞ . (8 marks) Q2 Consider a constrained optimization problem Minimize $x_1^2 + 2x_2^2$, subject to $$1 - x_1 - x_2 \le 0 \ .$$ The barrier function is defined by $$B(x) = -\log(x_1 + x_2 - 1)$$. (a) Write an equivalent unconstrained problem. (4 marks) (b) Indicate that the first-order necessary conditions are given by $$2x_1(x_1 + x_2 - 1) - \mu = 0,$$ $$4x_2(x_1 + x_2 - 1) - \mu = 0.$$ (6 marks) (c) Prove that the solution for Q2 (b) is given by $$x_1 = \frac{1 \pm \sqrt{1 + 3\mu}}{3}$$ and $x_2 = \frac{1 \pm \sqrt{1 + 3\mu}}{6}$. (10 marks) ## CONFIDENTIAL BWA 40703 Q3 Consider a nonlinear optimization problem Minimize $2x_1^2 + x_2^2 - 2x_1x_2 - 4x_1 - 6x_2$, subject to $$\begin{aligned} x_1 + x_2 &\leq 8, \\ -x_1 + 2x_2 &\leq 10, \\ -x_1 &\leq 0, \\ -x_2 &\leq 0. \end{aligned}$$ (a) Obtain the coefficient matrix for the active constraints and the inactive constraints. The initial point is $x_1 = (0, 0)^T$. (4 marks) (b) Calculate the projection matrix, that is, $$P = I - A_1^{\mathrm{T}} (A_1 A_1^{\mathrm{T}})^{-1} A_1.$$ (8 marks) (c) Show that multiplier $u = (-4, -6)^T$, given that $$u = -(A_1 A_1^T)^{-1} A_1 \nabla f(x_1).$$ (8 marks) ## CONFIDENTIAL BWA 40703 Q4 Assume that \mathbf{x}^* is a regular point, then there will be a corresponding Lagrange multiplier vector λ^* such that $$\nabla f(\mathbf{x}^*) + (\boldsymbol{\lambda}^*)^{\mathrm{T}} \nabla \mathbf{h}(\mathbf{x}^*) = \mathbf{0},$$ and the Hessian of the Lagrangian $$\mathbf{L}(\mathbf{x}^*) = \mathbf{F}(\mathbf{x}^*) + (\boldsymbol{\lambda}^*)^{\mathrm{T}} \mathbf{H}(\mathbf{x}^*)$$ must be positive semidefinite on the tangent subspace $$M = \{\mathbf{x} : \nabla \mathbf{h}(\mathbf{x}^*) \cdot \mathbf{x} = \mathbf{0}\}.$$ (a) Show that the dual function ϕ has the gradient $$\nabla \phi(\lambda) = \mathbf{h}(\mathbf{x}(\lambda))^{\mathrm{T}}.$$ (9 marks) (b) Determine that the Hessian of the dual function is $$\Phi(\lambda) = -\nabla h(x(\lambda)) L^{-1}(x(\lambda), \lambda) \nabla h(x(\lambda))^{T}.$$ (11 marks) Q5 Assume that the management has decided to produce P = 6,000 units of a given product line consisting of three individual items. The allocation of the total quantity among the three items will be decided by the following mathematical model: Minimize $$C = \sum_{i=1}^{3} \left(h_i \frac{Q_i}{2} + S_i \frac{d_i}{Q_i} \right),$$ subject to $$\sum_{i=1}^{3} Q_i = P,$$ where Q_i is the production quantity for item i (in units), h_i is the inventory holding cost for item i (in RM per month × unit), S_i is the setup cost for item i (in RM), d_i is the demand for item i (in units per month), P is the total amount to be produced (in units). (a) Indicate the equivalent unconstrained minimization problem. (4 marks) (b) Derive the first-order necessary conditions. (4 marks) (c) Show that the optimal production quantity for item i is $$Q_i^* = \sqrt{\frac{2S_i d_i}{h_i + 2\lambda}} \ .$$ (3 marks) (d) Evaluate the production quantity for i = 1, 2, 3, where the values of the parameters are listed below $$\lambda = 1$$, $h_1 = 1$, $h_2 = 1$, $h_3 = 2$, $S_1 = 100$, $S_2 = 50$, $S_3 = 400$, $$d_1 = 20,000, d_2 = 40,000, d_3 = 40,000.$$ (9 marks) - END OF QUESTIONS - CONFIDENTIAL