

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

: ELECTRONICS II

COURSE CODE

: BWC 20203

PROGRAMME CODE : BWC

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

Q1	(a)	Determin	e THREE (3) adv	antages of integrated	circuit (ICs)	over conventional
		onoun.				(3 marks)
	(b)	Determine the closed loop gain for each of the amplifier in Figure Q1 (b) (i) and Figure Q1 (b) (ii)				
		Figure Q1 (b) (ii). (6 marks)				
	(c)	Calculate the value of feedback resistance, R_f that will produce the indicated closed loop gain, A_{cl} in each amplifier in Figure Q1 (c).				
		(5 marks)				
	(d)	Determine the output voltage for the circuit in Figure Q1 (d) with a sinusoidal input of 3.0 mV.				
		(6 marks)				
	(e)	Q	Determine the input and output resistances of the amplifier circuit in Figure Q1 (e) . The op-amp data sheet gives $R_{in} = 2$ M Ω , $R_{out} = 75$ Ω and $A_{ol} = 200,000$.			
			200,000.			(6 marks)
		(ii) C	alculate the close loo	p gain, A of the amplit	fier.	(3 marks)
Q2	(a)	Describe TWO (2) types of active filters and draw an example of the circuit.				he circuit.
		(i) A	ctive filter			(2 marks)
		(ii) P	assive filter			(2 marks)
	(b)	Calculate the capacitance values required to produce a 3 kHz critical frequency in the low pass filter as in Figure Q2 (b). (8 marks)				
	(c)	Figure Q2 (c) shows a circuit for the combination of high pass and low pass fit Determine,				nd low pass filter.
		(i) th	e bandwidth of the ci	rcuit;		(4 marks)
		(ii) co	enter of the frequency	TERI	BUKA	(4 marks)

CONFIDENTIAL

BWC 20203

(d) Calculate the resonance frequency, f_0 and the band width, BW for the band pass filter circuit in **Figure Q2 (d)**.

(5 marks)

- Q3 (a) Calculate the following codes;
 - (i) $(11001)_2 + (101)_2 = 11110$

(2 marks)

(ii) $(11010)_2 - (10101)_2 = 00101$

(2 marks)

(iii) $(1101)_2 \times (1001)_2 = 1110101$

(2 marks)

(iv) $(101101)_2 \div (110)_2 = 111$

(2 marks)

(b) Simplify the logic expression, A+B'C+(A(B+C')) and draw a schematic for the circuit that implements the simplified expression.

(6 marks)

(ii) Draw a schematic for a circuit that directly implements the logic function A+B'C+(A(B+C')).

(6 marks)

(c) Show the behavior of the logic circuit in **Figure Q3 (c)** with a truth table.

(6 marks)

Q4 (a) Describe two differences between latches and flip-flop.

(4 marks)

(b) State the characteristic equations and the excitation tables for the SR and JK flip-flops.

(6 marks)

(c) A flip-flop 7474 integrated circuit is supplied with a waveform in their input, S and R as in **Figure Q4(c)**. Sketch the output diagram at Q and state the function at each sequence.

(10 marks)

TERBUKA

END OF QUESTIONS -

COURSE NAME

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

: SEM I / 2019/2020 : ELECTRONICS II PROGRAMME CODE: BWC

COURSE CODE : BWC 20203

Figure Q1 (b) (i)

Figure Q1 (b) (ii)

SEMESTER / SESSION : SEM I / 2019/2020 PROGRAMME CODE : BWC

COURSE NAME : ELECTRONICS II COURSE CODE : BWC 20203

Figure Q1 (c)

Figure Q1 (d)

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: ELECTRONICS II

PROGRAMME CODE: BWC

COURSE CODE

: BWC 20203

Figure Q1 (e)

Figure Q2 (b)

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: ELECTRONICS II

PROGRAMME CODE: BWC

COURSE CODE

: BWC 20203

Figure Q2 (c)

Figure Q2 (d)

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: FIBER OPTICS

PROGRAMME CODE: BWC

COURSE CODE

: BWC 40703

Figure Q3 (c)

Figure Q4 (c)

