

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

MATHEMATICS FOR

ENGINEERING TECHNOLOGY III

COURSE CODE

: BWM 22403

PROGRAMME CODE : BNG / BNL / BNM / BNT

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

A) ANSWER ALL QUESTIONS

B) ALL CALCULATIONS MUST BE IN THREE (3) DECIMAL PLACES

TERBUKA

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) Determine whether the function

$$f(x,y) = \begin{cases} \frac{x^4 + y^4}{\sqrt{x^4 + y^4 + 1} - 1}, & (x,y) \neq (0,0) \\ 2, & (x,y) = (0,0) \end{cases}$$

is continuous at (0, 0) or not.

(6 marks)

(b) Find $\frac{dz}{dt}$ using the chain rule if $z = e^x - e^y$, $x = \ln t^2$, $y = t^3$.

(7 marks)

(c) Given $\int_0^1 \int_x^1 \sin(\pi y^2) dy dx$. Evaluate the double integrals by changing the order of integration.

(8 marks)

(d) Calculate the volume of the solid between the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and y + z = 4 using the cylindrical coordinates.

(9 marks)

Q2 (a) Given nonlinear equation $f(x) = \sin x + \cos(1 + x^2) - 1$. Estimate the root of f(x) in the interval [1,2] using secant method. Iterate until $|f(x_i)| < 0.005$.

(7 marks)

(b) By the Kirchoff's law, the currents I_1 , I_2 and I_3 in a three loop current network with five resistors R_1 , R_2 , R_3 , R_4 , R_5 and two voltage sources V_1 and V_2 can be described by the following system of linear equations:

where $R_1 = R_2 = R_3 = R_4 = R_5 = 1$ ohm and $V_1 = 5$ volts and $V_2 = -6$ volts.

- (i) Construct the problem in a matrix form.
- (ii) Determine the currents I_1 , I_2 and I_3 by solving the matrix in **Q2(b)(i)** using Thomas algorithm and Gauss-Seidel iteration method. Please use initial guess $\begin{bmatrix} 3 & 2 & 4 \end{bmatrix}^T$ for Gauss-Seidel iteration method.

(18 marks)

Q3 (a) Consider the data given in Table Q3(a).

Table Q3(a)

x	0.3	0.35	0.4	0.45	0.5
f(x)	1.567	1.735	1.864	1.951	1.995

Find the approximate values of f'(0.4) and f''(0.4) with h = 0.05 and h = 0.1 using three point-central difference formula.

(6 marks)

(b) The moment of mass about y - axis of a thin plate with constant density, δ bounded by two curves f(x) and g(x) on the interval [a,b] is given by

$$M_{y} = \delta \int_{a}^{b} x [f(x) - g(x)] dx.$$

Assume the constant density, δ is 2. Determine M_y for the plate bounded by $f(x) = 2\sin(2x)$ and g(x) = 0 on the interval $[0, \pi]$ using

- (i) $\frac{1}{3}$ Simpson's rule with subinterval n = 8.
- (ii) 2-point Gauss quadrature.

(19 marks)

Q4 (a) Given the data in Table Q4(a).

Table Q4(a)

x	5	6	9	11	13
у	12	13	14	16	26

- (i) Construct the polynomial of degree four that interpolates the data using Newton's divided-difference method.
- (ii) Hence, estimate the value of y corresponding to x = 7.

(11 marks)

(b) Given a matrix

$$A = \begin{bmatrix} 10 & 7 & 3 \\ 7 & 8.5 & 2 \\ 3 & 2 & 1.5 \end{bmatrix}.$$

Determine the smallest eigenvalue, $\lambda_{\text{Smallest}}$ of A using inverse power method. Use initial eigenvector, $v^{(0)} = \begin{bmatrix} 0 & 1 & 0.5 \end{bmatrix}^T$. Do the iteration until $|m_{k+1} - m_k| < 0.005$.

(9 marks)

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2019/2020

PROGRAMME CODE: BNG/BNL/BNM/

BNT

COURSE NAME

: MATHEMATICS FOR

COURSE CODE

: BWM 22403

ENGINEERING TECHNOLOGY III

Formulas

Multiple integrals

Cylindrical coordinate: $x = r \cos \theta$, $y = r \sin \theta$, z = z, $x^2 + y^2 = r^2$, $0 \le \theta \le 2\pi$. $\iiint_G f(x, y, z) dV = \iiint_G f(r, \theta, z) r dz dr d\theta$

Nonlinear equations

Secant method:
$$x_{i+2} = \frac{x_i f(x_{i+1}) - x_{i+1} f(x_i)}{f(x_{i+1}) - f(x_i)}, i = 0, 1, 2, ...$$

System of linear equations

Thomas algorithm:

i	1	2	 n
d_i			
e_i			
c_i			
b_i			
$\alpha_1 = d_1$			
$\alpha_1 = d_1$ $\alpha_i = d_i - c_i \beta_{i-1}$			
$\beta_i = \frac{e_i}{\alpha_i}$			
$y_1 = \frac{b_1}{\alpha_1}$ $y_i = \frac{b_i - c_i y_{i-1}}{\alpha_i}$			
$y_i = \frac{b_i - c_i y_{i-1}}{\alpha_i}$			
$x_n = y_n$			
$x_i = y_i - \beta_i x_{i+1}$			

Gauss-Seidel iteration method:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, i = 1, 2, ..., n$$

CONFIDENTIAL

BWM 22403

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2019/2020

PROGRAMME CODE: BNG/BNL/BNM/

BNT

COURSE NAME

: MATHEMATICS FOR

COURSE CODE

: BWM 22403

ENGINEERING TECHNOLOGY III

Interpolation

Newton divided difference:

$$P_n(x) = f_0^{[0]} + f_0^{[1]}(x - x_0) + f_0^{[2]}(x - x_0)(x - x_1) + \dots + f_0^{[n]}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Numerical differentiation

First derivatives

3-point central difference :
$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Second derivatives

3-point central difference :
$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Numerical integration

$$\frac{1}{3} \text{ Simpson's rule: } \int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f_{0} + f_{n} + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f_{i} + 2 \sum_{\substack{i=2 \ i \text{ even}}}^{n-2} f_{i} \right]$$

Gauss quadrature

For
$$\int_a^b f(x)dx$$
, $x = \frac{(b-a)t + (b+a)}{2}$
2-points: $\int_{-1}^1 f(x)dx \approx g\left(-\frac{1}{\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right)$

Eigenvalue

Power Method :
$$v^{(k+1)} = \frac{1}{m_{k+1}} A v^{(k)}, \ k = 0, 1, 2, ...,$$

Inverse Power Method :
$$\lambda_{\text{smallest}} = \frac{1}{\lambda_{\text{inverse}}}$$

