

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER I SESSION 2019/2020

**COURSE NAME** 

: ATOMIC AND NUCLEAR PHYSICS

**COURSE CODE** 

BWC 20903

**PROGRAMME** 

BWC

EXAMINATION DATE :

DECEMBER 2019 / JANUARY 2020

**DURATION** 

: 3 HOURS

**INSTRUCTION** 

: ANSWER ALL QUESTIONS



THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

#### CONFIDENTIAL

BWC20903

Q1 (a) Explain the structure of an atomic nucleus.

(4 marks)

(b) The radius r of a nucleus with mass number A can be estimated by  $r = r_0 A^{1/3}$ . Determine  $r_0$  in unit femtometer [fm] (femto =  $10^{-15}$ ) if the density of all nuclei is approximately a constant with the value of  $2.3 \times 10^{17}$  kg m<sup>-3</sup>. (The average mass of a nucleon is equal to  $1.6738 \times 10^{-27}$  kg)

(6 marks)

(c) Explain the mechanism of nuclear force and electromagnetic force that are present inside the atomic nuclei.

(6 marks)

(d) Describe **TWO** (2) properties of the atomic nuclei that permit the establishment of the liquid drop model.

(4 marks)

Q2 (a) The nuclear binding energy B for  $^{235}_{92}U$  that corresponds to its mass defect is 1782.9042 MeV. Calculate the rest mass of  $^{235}_{92}U$  in unit u. (Given that  $1u = 1.6605 \times 10^{-27} \text{ kg} = 931.494 \text{ MeV/c}^2$ , rest mass of a proton=  $1.6726 \times 10^{-27} \text{ kg}$ , rest mass of a neutron= $1.6749 \times 10^{-27} \text{ kg}$  and rest mass of an electron=  $9.109 \times 10^{-31} \text{ kg}$ )

(6 marks)

(b) The nuclear binding energy *B* (in MeV) from liquid drop model using Weizsäcker Bethe- semi empirical mass formula is given by:

$$B = (i)15.56A \quad (ii)17.23A^{2/3} \quad (iii)0.697\frac{Z^2}{A^{1/3}} \quad (iv)23.285\frac{(N-Z)^2}{A} + \delta \,,$$

$$\delta = \begin{cases} +\frac{130}{A} & \text{(for even-even nuclei)} \\ 0 & \text{(for even-odd or odd-even nuclei)} \\ -\frac{130}{A} & \text{(for odd-odd nuclei)} \end{cases}$$

- (i) State the name of the terms and predict the suitable sign ("+" or "-") for (i), (ii), (iii) and (iv) of the above equation.

  (8 marks)
- (ii) Using the equation, calculate B value for  ${}^{235}_{92}U$  and compare the result with the nuclear binding energy stated in Q2(a).

(6 marks)

### **CONFIDENTIAL**

BWC20903

- Q3 (a) According to the nuclear shell model, the energy states in the ascending order of nucleons inside a nucleus are as depicted in the **Figure Q3(a)**. The degeneracy of each level is due to the effect of spin-orbital interaction.
  - (i) In **Figure Q3(a)**, the spin, *j* for 1s and 1g level are already given. Estimate the spin, *j* for the rest of the quantized energy levels.

(6 marks)

(ii) Determine the nuclear spin for the following nuclides:  ${}^{16}_{8}O$ ,  ${}^{101}_{44}Ru$ , and  ${}^{113}_{49}In$ .

(6 marks)

(b) Determine the energy released in the alpha decay of:

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

The mass of  $^{238}_{92}U$ ,  $^{234}_{90}Th$ , and  $^{4}_{2}He$  are 238.048608u, 234.043583u and 4.002603u, respectively. (Use  $c^2 = 931.494 \text{ MeV/u}$ )

(4 marks)

(c) Distinguish the positive electron emission decay and negative electron emission decay. Provide the suitable decay equations representing each decay process.

(4 marks)

 $\mathbf{Q4}$  (a) The rate of change of the number of radioactive nuclei N is given by:

$$\frac{dN}{dt} = -\lambda N$$

where  $\lambda$  is the nuclei's decay constant. Assuming that the number of this radioactive nuclei at t=0 is  $N_0$ , prove that the number of radioactive nuclei N decreases exponentially with time.

(6 marks)

(b) A rock sample contains traces of  $^{238}$ U,  $^{235}$ U,  $^{232}$ Th,  $^{208}$ Pb,  $^{207}$ Pb, and  $^{206}$ Pb. The analysis shows that the ratio of the amount of  $^{238}$ U to  $^{206}$ Pb is 1.164. Assuming that the rock originally contained no lead, calculate the age of the rock. (Given the half-life  $T_{1/2}$  of  $^{238}$ U is  $4.47 \times 10^9$  year)

(6 marks)

(c) One of the reactions that occurs when  ${}^{10}B$  (boron) is bombarded by neutrons is  ${}^{10}B(n,\alpha)^7Li$ ,

where *n* refers to the bombarding neutron. The mass for  $^{10}B$ , *n*, alpha particle and  $^{7}Li$  are 10.012937u, 1.008665u, 4.002603u and 7.016004u, respectively. Calculate the *Q* value of this reaction and subsequently conclude whether this reaction is exothermic or endothermic. (Use  $c^2 = 931.494 \, MeV/u$ )

(4 marks)

(d) An aluminum foil of thickness 0.30 mm is bombarded by energetic neutrons. The aluminum nuclei undergo neutron capture according to the process  $^{27}\text{Al}(n,\gamma)^{28}\text{Al}$ , with a measured capture cross section of  $2.0\times10^{-31}$  m². Assuming the flux of incident neutrons to be  $5.0\times10^{12}$  neutrons/ cm²·s , calculate the number of neutrons captured per second by  $1.0~\text{cm}^2$  of the foil. (The density of aluminum is  $2.7~\text{g cm}^{-3}$ )

(4 marks)

Q5 (a) Explain the importance of chain reaction in fission reactor.

(4 marks)

(b) The rate of public acceptance towards nuclear power is considerably low, even in a well developed nation. Indentify the causes and suggest appropriate approaches in order to enhance this rate.

(6 marks)

- (c) In fusion reaction, atoms are ionized and thus the system consists of a collection of electrons and nuclei, commonly referred to as plasma. The success of fusion reaction relies heavily on the confinement of the plasma.
  - (i) Differentiate the mechanism of magnetic field confinement and inertia confinement.

(6 marks)

(ii) List TWO (2) technological challenges for fusion reactor, other than the confinement of plasma.

(4 marks)



- END OF QUESTIONS -



#### Figure Q3 (a)

$$d_1 = d_1 = d_1$$

$$f_{1}$$
 $f_{2}$ 
 $f_{3}$ 
 $f_{4}$ 
 $f_{5}$ 
 $f_{5}$ 

**PHYSICS** 

: BMC 50803

CONBSE CODE

: ATOMIC AND NUCLEAR

**COURSE NAME** 

PROGRAMME CODE : BWC

SEMESLER/ SESSION : SEM I/ 5019/5050

T.

FINAL EXAMINATION