

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

QUANTUM PHYSICS

COURSE CODE

: BWC 20803

PROGRAMME CODE : BWC

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

Q1 A particle is trapped in a square well potential as shown in Figure Q1 with

$$V(x) = \begin{cases} \infty & x < 0 \\ 0 & 0 \le x \le L \\ \infty & x > L \end{cases}$$

The Time Independent Schrödinger Equation is given by

$$\hat{H}\psi(x) = E\psi(x),$$

and $\hat{H} = -\frac{\hbar}{2m}\nabla^2 + V(r)$

where m and E is the mass and kinetic energy of the particle, respectively.

(a) Determine the general form of wave function $\psi(x)$ of the particle in this one-dimensional potential well.

(6 marks)

(b) Consider the boundary conditions and determine the allowed energy levels E_n of the particle.

(8 marks)

(c) Based on the normalization of wave function, conclude the complete form of wave function $\psi(x)$.

(6 marks)

Q2 A particle with energy E is traveling to the right towards a step potential as in **Figure Q2**. The potential in the figure corresponds to

$$V(x) = \begin{cases} 0 & x < 0 \\ V_0 & x > 0 \end{cases}$$

- (a) Solve the Schrödinger Equation for the regions x < 0 and x > 0, in the case of
 - (i) $E > V_0$

(4 marks)

(ii) $E < V_0$

(4 marks)

- (b) Given the wave's probability current density $S(x) = \frac{i\hbar}{2m} \left[\frac{d\psi^*(x)}{dx} \psi(x) \psi^*(x) \frac{d\psi(x)}{dx} \right]$, calculate the reflection coefficient, R and transmission coefficient, T for the wave in the case of
 - (i) $E > V_0$

(6 marks)

(ii) $E < V_0$

TERBUKA

(6 marks)

CONFIDENTIAL

BWC 20803

Justify that any operator commutes with itself. Q3 (a)

(3 marks)

Express [A, B] in terms of [B, A]. (b)

(3 marks)

Determine the Hermitian adjoint of a commutator [A, B][†] if A and B are Hermitian (c) operators.

(6 marks)

Calculate the eigenvalues and eigenvectors of the following operator. (d)

$$A = \begin{vmatrix} 3 & -1 \\ 4 & -2 \end{vmatrix}$$

(8 marks)

- Deduce the commutator of component angular momentum L_{y} and $L_{z},\,[L_{y},\,L_{z}].$ Q4(a) (6 marks)
 - If $|\alpha,\beta\rangle$ is an angular momentum eigenvector, determine $L_+L_z|\alpha,\beta\rangle$ and subsequently (b) evaluate $L_{\pm}|\alpha,\beta\rangle$, given that $L_{\pm}|\alpha,\beta\rangle = \hbar\beta|\alpha,\beta\rangle$ and $[L_{\pm},L_{\pm}] = \pm\hbar L_{\pm}$. (8 marks)
 - For an angular momentum eigenstate $|l,m\rangle$, eigenvalues of L² and L_z are given as (c) $L^{2}|l,m\rangle = l(l+1)\hbar^{2}|l,m\rangle$ and $L_{z}|l,m\rangle = m\hbar|l,m\rangle$.
 - (i) Explain the physical meaning of l and m.

(4 marks)

Determine the allowable value of m. (ii)

(2 marks)

Determine the spin eigenstates of electrons, $s = \frac{1}{2}$. Q5 (a)

(4 marks)

Determine the spin eigenstates of photons, s = 1. (b)

(6 marks)

The spin operator S² works similar to the angular momentum operator L². Predict the (c) eigenvalues of S^2 .

(4 marks)

The S_+ and S_- operators are defined in analogy to the L_+ and L_- operator. Determine S_+ (d) and S..

(6 marks)

COURSE

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

: QUANTUM PHYSICS

PROGRAMME CODE: BWC

COURSE CODE : BWC 20803

V(x)

Figure Q1

Figure Q2

Charles that Apply the pro-