

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME : ENGINEERING MATHEMATICS III

COURSE CODE : BFC 24103

PROGRAMME

: 2 BFF

EXAMINTION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION : ANSWER FOUR (4) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

- Given $f(x, y) = \frac{3xy^4}{2x^2 + 5y^8}$. Q1
 - Determine whether or not $\lim_{(x,y)\to(0,0)} f(x,y)$ exist, by letting $(x,y)\to(0,0)$ (i) along any straight line y = mx and the curve $x = y^4$.
 - Is the function f(x, y) continuous at (0, 0)? (ii)

(13 marks)

- The length l, width w, and height h of a box change with time. At a certain instant, (b) the dimensions are l = 1 m and w = h = 2 m, and l and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that instant, find the rates at which the following quantities are changing.
 - The volume. (i)
 - The surface area. (ii)

(12 marks)

- By using polar coordinate, evaluate $\iint (x+y)dA$ where R is the region in the Q2(a) first quadrant lying inside the disc $x^2 + y^2 \le 9$ and under the line y = x. (5 marks)
 - Evaluate the following integral by changing to spherical coordinates. (b)

$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} dz dx dy$$

(7 marks)

A lamina has a shape of triangle with vertices (0,0), (0,2) and (2,0). If the (c) density is $\delta(x,y) = xy$, find the centre of mass.

(13 marks)

The position vector of a particle is Q3 (a)

$$\mathbf{r}(t) = \sqrt{t} \,\mathbf{i} + (2t+4) \,\mathbf{j}.$$

- Sketch the graph of $\mathbf{r}(t)$ by indicating the direction of the vector. (i)
- Find the velocity, speed and acceleration of the particle at t = 2. (ii)

(13 marks)

Given the vector-valued function (b)

$$\mathbf{r}(t) = \cos 5t \,\mathbf{i} + \sin 5t \,\mathbf{j} + 2t \,\mathbf{k}$$
.

Find its unit tangent vector, $\mathbf{T}(t)$, principal unit normal vector, $\mathbf{N}(t)$ and curvature, κ at $t = \frac{\pi}{2}$.

(12 marks)

- Q4 (a) Use Green's theorem to rewrite and evaluate $\oint_C (x^2 + y^3) dx + 3xy^2 dy$, where C consists of the portion of $y = x^2$ from (2,4) to (0,0), followed by the line segments from (0,0) to (2,0) and from (2,0) to (2,4). (4 marks)
 - (b) Find the work done by the force field $\mathbf{F}(x,y) = (e^x y^3)\mathbf{i} + (\sin y + x^3)\mathbf{j}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in counterclockwise direction. (10 marks)
 - (c) Given that $\mathbf{F}(x, y) = 2xy^3\mathbf{i} + (2 + 3x^2y^2)\mathbf{j}$.
 - (i) Show that \mathbf{F} is a conservative vector field on the entire plane xy plane.
 - (ii) Find the potential function. (11 marks)
- Q5 (a) Use the Divergence Theorem to find the outward flux of the vector field $\mathbf{F}(x,y) = x^3\mathbf{i} + y^5\mathbf{j} + z^3\mathbf{k}$ across the surface of the region that is enclosed by the hemisphere $z = \sqrt{a^2 x^2 y^2}$ and the plane z = 0. (13 marks)
 - (b) By means of Stoke Theorem, evaluate the line integral $\int_C \mathbf{F} . d\mathbf{r}$ for $\mathbf{F}(x,y,z) = -y\mathbf{i} + x^2\mathbf{j} + z^3\mathbf{k}$ where C is the intersection of a circular cylinder $x^2 + y^2 = 4$ and the plane x + z = 3, oriented so that it is traversed counterclockwise when viewed from the positive z- axis. (12 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2013/2014 : ENGINEERING COURSE NAME

MATHEMATICS III

PROGRAMME: 2 BFF COURSE CODE: BFC 24013

Formulae

Polar coordinate: $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \tan^{-1}(y/x)$, and

$$\iint_{P} f(x,y)dA = \iint_{P} f(r,\theta) r dr d\theta$$

Cylindrical coordinate: $x = r \cos \theta$, $y = r \sin \theta$, z = z,

$$\iiint\limits_{G} f(x, y, z) dV = \iiint\limits_{G} f(r, \theta, z) r \, dz \, dr \, d\theta$$

Spherical coordinate: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, $x^2 + y^2 + z^2 = \rho^2$, $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$, and

$$\iiint\limits_{G} f(x, y, z) dV = \iiint\limits_{G} f(\rho, \phi, \theta) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

Directional derivative: $D_{\mathbf{u}} f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$

Let $\mathbf{F}(x, y, z) = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ is vector field, then

the **divergence** of
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

Let C is a smooth curve given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, t is parameter, then

the unit tangent vector:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

the unit normal vector:

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

the binormal vector:

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

the curvature:

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$$

the radius of curvature:

$$\rho = 1/\kappa$$

Green Theorem: $\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$

Gauss Theorem: $\iint_{S} \mathbf{F} \bullet \mathbf{n} dS = \iiint_{G} \nabla \bullet \mathbf{F} dV$

Stokes' Theorem: $\oint_C \mathbf{F} \bullet d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \bullet \mathbf{n} dS$

Arc length

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2013/2014 COURSE NAME : ENGINEERING

MATHEMATICS III

PROGRAMME: 2 BFF COURSE CODE: BFC 24013

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $t \in [a,b]$, then the **arc length** $s = \int_{a}^{b} \|\mathbf{r}'(t)\| dt = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $t \in [a, b]$, then the arc length

$$s = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

Tangent Plane

z-z₀ =
$$f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$$

Extreme of two variable functions

$$G(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^2$$

Case 1: If G(a,b) > 0 and $f_{xx}(x,y) < 0$ then f has local maximum at (a,b)

Case2: If G(a,b) > 0 and $f_{xx}(x,y) > 0$ then f has local minimum at (a,b)

Case 3: If G(a,b) < 0 then f has a saddle point at (a,b)

Case4: If G(a,b) = 0 then no conclusion can be made.

In 2-D: Lamina

Mass: $m = \iint_{R} \delta(x, y) dA$, where $\delta(x, y)$ is a density of lamina.

Moment of mass: (i) about y-axis, $M_y = \iint_R x \delta(x, y) dA$, (ii) about x-axis,

$$M_x = \iint_R y \delta(x, y) dA$$

Centre of mass, $(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$

Moment inertia: (i) $I_y = \iint_R x^2 \delta(x, y) dA$, (ii) $I_x = \iint_R y^2 \delta(x, y) dA$, (iii)

$$I_o = \iint\limits_R \left(x^2 + y^2\right) \delta(x, y) dA$$

In 3-D: Solid

Mass, $m = \iiint_G \delta(x, y, z) dV$. If $\delta(x, y, z) = c$, c is a constant, then $m = \iiint_G dA$ is volume.

Moment of mass

- (i) about yz-plane, $M_{yz} = \iiint_G x \delta(x, y, z) dV$
- (ii) about xz-plane, $M_{xz} = \iiint_G y \delta(x, y, z) dV$
- (iii) about xy-pane, $M_{xy} = \iiint z \delta(x, y, z) dV$

FINAL EXAMINATION

SEMESTER / SESSION: SEM II / 2013/2014 COURSE NAME : ENGINEERING

MATHEMATICS III

PROGRAMME: 2 BFF COURSE CODE: BFC 24013

Centre of gravity, $(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$

Moment inertia

- (i)
- about x-axis: $I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$ about y-axis: $I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$ about z-axis: $I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$ (ii)
- (iii)

