

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME

CIVIL ENGINEERING

· MATHEMATICS II

COURSE CODE

: BFC 14003 / BWM 10203

BACHELOR OF CIVIL

PROGRAMME

ENGINEERING WITH HONOURS

EXAMINATION DATE

: DECEMBER 2015 / JANUARY 2015

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS EXAMINATION PAPER CONSISTS OF SEVEN (7) PAGES

Fig. 8 * 40 (10 mail hwam 15) well or conserve for Husseln Ord (Adlayshe was 80 auns Rojo, Bottle Patral, Johnson Q1 (a) By using homogenous equations method, solve the differential equation

$$\frac{dy}{dx} = -\frac{x^2 + y^2}{xy}$$

given that y = 2 when x = 2

(9 marks)

(b) The remaining soup need to be put into the fridge. The soup has just boiled at 100°C. The fridge could not accommodate a pot of soup if it is any warmer than 20°C. The pot need to cooling down below 20°C by cooling the pot in a sink full of a cold water. The cold water was kept running, thus the temperature of water in the sink was roughly constant at 5°C. In ten minutes, the temperature drop to 60°C. Determine the duration for a pot of soup can be put into the fridge.

(11 marks)

Q2 (a) Given a non-homogenous second order differential equation $y'' + 6y' + 10y = 2 \sin 2x$

Fine the general solution for the equation by using undetermined coefficient.

(10 marks)

(b) A spring with a 3 kg mass is held stretched 0.6 m beyond its natural length by a force of 20 N. If the spring begins at its equilibrium position but a push gives it an initial velocity of 1.2 m/s, find the position of the mass after 5 seconds.

(10 marks)

Q3 (a) Find the Laplace transform for each of given function

$$f(t) = 2t^4 - e^{-4t}$$

(4 marks)

- (b) Find the inverse Laplace transforms of the following expressions.
 - (i) $\frac{3}{9s^2+4}$
 - (ii) $\frac{2s}{16s^2+9}$

(6 marks)

(c) By using Laplace transform method, solve the initial value problem

$$y'' + 4y = e^{-t}, y(0) = 2, y'(0) = 1$$

(10 marks)

Q4 (a) For the following power series determine the interval and radius of convergence.

$$\sum_{n=0}^{\infty} \frac{4^{1+2n}}{5^{n+1}} (x+3)^n$$

(10 marks)

(b) Use one of the Maclaurin Series derived to determine the Maclaurin Series for $f(x) = \sin(2x)$.

3

(10 marks)

Q5

A periodic function f(x) is defined by

$$f(x) = \begin{cases} -2, & -\pi \le x < 0, \\ 2, & 0 \le x < \pi. \end{cases}$$

$$f(x) = f(x + 2\pi).$$

which it can be written as a Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

(a) Sketch the graph of f(x) over $-2\pi \le x \le 2\pi$.

(2 marks)

(b) Determine whether the function is even, odd or neither.

(2 marks)

- (c) For n = 1, 2, 3, ..., show that
 - (i) $a_0 = 0$.
 - (ii) $a_n = 0$.

(7 marks)

(d) Calculate the Fourier coefficient, b_n .

(5 marks)

(e) Find the Fourier series.

(4 marks)

-END OF QUESTION-

4

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2015/2016

PROGRAMME : 1 BFF / 2 BFF

COURSE: CIVIL ENGINEERING

COURSE CODE: BFC 14003

MATHEMATICS II

Formulae

Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1 x} + Be^{m_2 x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$ $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Particular Integral of ay'' + by' + cy = f(x): Method of Undetermined Coefficients

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + \dots + A_1 x + A_0$	$x^r(B_nx^n+\cdots+B_1x+B_0)$
$Ce^{\alpha x}$	$x^r(Pe^{\alpha x})$
$C\cos\beta x$ or $C\sin\beta x$	$x''(p\cos\beta x + q\sin\beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Variation of Parameters

Wronskian	Parameter	Solution
$y_h = Ay_1 + By_2$ $W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$ $= y_1 y_2' - y_2 y_1'$	$u_1 = -\int \frac{y_2 f(x)}{W} dx, u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_p = u_1 y_1 + u_2 y_2$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2015/2016

PROGRAMME : 1 BFF / 2 BFF

COURSE: CIVIL ENGINEERING

COURSE CODE: BFC 14003

MATHEMATICS II

Laplace Transforms

$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$						
f(t)	F(s)	f(t)	F(s)			
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$			
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$			
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}			
sin at	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$			
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)			
sinh at	$\frac{a}{s^2 - a^2}$	y(t)	Y(s)			
cosh at	$\frac{s}{s^2 - a^2}$	$\dot{y}(t)$	sY(s) - y(0)			
$e^{at}f(t)$	F(s-a)	$\ddot{y}(t)$	$s^2Y(s) - sy(0) - \dot{y}(0)$			
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$					

Periodic Function for Laplace transform: $\mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$, s > 0.

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2015/2016

PROGRAMME: 1 BFF / 2 BFF

COURSE: CIVIL ENGINEERING

COURSE CODE: BFC 14003

MATHEMATICS II

Maclaurin Series

$$f(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$
$$= \sum_{p=0}^{n} \frac{f^{(p)}(0)}{p!}x^p$$

Fourier Series

Fourier series expansion of periodic Fourier half-range series expansion function with period 2L

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$
where

where
$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$
where
$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$