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PARTA

Ql (a) Determine "f;, f, and /; of the firnction

Q2

f (x,y) = exY sin(4 Yz)
(5 marks)

(b) Given f (x,y) - JT+ zy'. Use the total differential to approximate the value of
f(- 0.07,2.98) by taking (0, 3) as a guide point.

(7 marks)

(c) (i) Show that the limit of the tunction f (x,y) = # does not exist when

(x,y) - (0,0) by taking the limit along a straight line y: mx aidthe parabola

x = Y2' 
(7 marks)

(ii) Determine whether the function
(x4 - 4v4

f (x,v) =lf ir(x'Y) * (o'o)

t0, if (x,y) - (0,0)

continuous at (0,0) or not.

(6 marks)

(a) By using polar coordinates, evaluate the following integration

IJr" + y' -2x\dr4
R

where R is the region bounded by the x-axis, the line y =tx and the circle x2 + yz =!

(10 marks)

O) Ahole inthe shape of acone 
" = JW is drilled outfromasphere x2 +y2 *zz =

25. By using spherical coordinates, determine the volume of the remaining solid.

(7 marks)

(c) A solid of half circular cylinder y = -tlffi is bognded by z:2 and z= l0 - y. Let
assume that the solid has density 6(x,y,z) = x2 + y2 , determine the mass of the solid.

(8 marks)
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PART B

Q3 (a) Given the vector-valued function

r(r) = .lFir*|i* ln(t + 1)k

(i) Find the domain of r(t)
(7 marks)

(ii) Determine lim r(t)
(7 marks)

(b) Find a vector equation that represents the curve of intersection of the cylinder xz + y2 -
16 and the plane x * z:5

(4 marks)

(c) Determine the arc length of the helix r(t) = b costi* b sinti + ttlfr k, from /:0 to
2r, wherc D is constant

(7 marks)

Q4 (a) Use Green's Theorem to evaluate the line integral ftr* y')dx +2x dy

where C is the boundary of the region between x2 + y2 = 1 and xz + yz - t
(15 marks)

(b) Determine the work done by force field F(x,y) = xi * (2x + y)i along the curve C,
where C is the upper semicircle that starts from (1, 0) and ends at (0, 1)

(10 marks)

Q5 (a) Given the vector field F(x,y ,z) = xzi + yzi + z2k across the surface S. S is enclosed by

tetrahedron in the first octant bounded by x * 2y I z = 1 and the coordinate planes.

Use Gauss's Theorem to calculate the outward flux

JJr. " 
as

s

(15 marks)

(b) Giventhevectorfield F(x,y,z) = 2xi*3x2 i+3zzk acrossthe surfaceswhichis
part of a sphere x2 + y2 * z2 = 4 for which z> 0 with upward orientation. Use

Stokes' Theorem to evaluate

lr a,
c

where C to be the positively oriented circle x2 + y2 = 4 that forms the boundary of S in
the ry-plane

(10 marks)

END OF QUESTTON
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FOBMULAE:

Relative extrema test:
Let Discriminant : g(x, y):.fo (x, y) - Vry(x, y)12 and (a, D) is critical point
(i) If g(a, b) > 0 nd.fo @, b) > 0, then/(a, b) is local minimum
(ii) If g(a, b)> 0 andfo @, b) < 0, then/(a, b) is local maximum
(iii) If g(a, b) < 0, then (a, b,.f (a, b)) is saddle point
(iv) If g(a, b):0, then the test is inconclusive

Cartesian coordinates to Spherical coordinates:

x = p sinf cos?,y - p sinO sin?,z = p cos\,x' + y' * z2 = p2,O < Q < n and0 < 0 < 2n

Cartesian coordinates to Polar coordinates:

x= r cos 0,y = r sing ,xz * y2 = T2,tanO -y and 0
x

II ro,y)dA=t:::: f:::[:] r? cosg,r sing)r dr de
R

Cartesian coordinates to Cylindrical coordinates:

x=Tcosl,y= rsing, z= ztxz +yz =12,tang =Z and 0 <e <2n
x

!ffr<*,t,') dv =l:::: [--^13 I::;:[:] f (r cosl,r sine, z)r dz dr d0
G

[l[f{*,t,,')dv: I:::: !:::3 t[:l:[,f] rQt sinacosg, p sin@ stnl,p cosl)p2 sina dp do d0
G

Partial derivatives of / with respect to x:

f,f*(x,y)=lJ$W
Partial derivatives of / with respect toy:

fu,fu?,Y) = liru
f(x,y+It)-f(x,y)

y, ty\*t ./ ) iljd n

The second-order partial derivatives for f (x, y):

a Pf\_a'f _r
ax\ax) oxox- txx
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The total differential of z:
0z 0z

dr= ,-xdx+ rdl
Triple integrals in 3-dimensional Cartesian Coordinate (x' y' z):

v =lllav =[ffa'ata*
GG

Triple integrals in Cylindrical Coordinate (r,0' z):

v = Mav = lffa', a, ae
GG

x = rcos? , ! = rsin? ,z: zand x2 * y' = r'

Centroid for a homogeneous lamina:

,= 1 l[*a,j=' llyaarea"i area';

Unit Tangent Vector, T(t) = 
ffi

Principal Unit Normal Vector, N1r)= 
ffi

ArclengthofCintheinterval[a,b],,=i=i||',t'l||a'

curvature of c, K -lLAd
ll 
r'(r) 

ll

Green Theorem, f M dx+ ltr )., - f { aN aM\ 
ou

,r,utrtyu)/_Jj[a,_ Ay I

Gauss Theorem' IIF. n dS -fffo o F dV
SG

Stokes Theorem' fF o rt1 =ljto * F) o n dS
CS
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Surface Integral:

Let S be a surface with equation z = g(x, y) and let ,l? be its projection on the xy-plane.

[l f o, !, 2) ds = II f Q, y, s(rc, /))
SR

JJr.n d,s = JJr [- X,-*,.*] dA,oriented upward
s

|J, 
. n ds -lJr . 

[. *. 
+ 
X, - 

*] d,4,oriented downward
s


