

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION **SEMESTER II SESSION 2016/2017**

**COURSE NAME** 

: MECHANICS OF MATERIAL

COURSE CODE

: BFC20903

PROGRAMME CODE : BFF

EXAMINATION DATE : JUNE 2017

**DURATION** 

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

| Q1 | (a) | Describe briefly about:                                                                                                                                                                                                               |                                                                                                                                                                        |             |  |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
|    |     | (i)<br>(ii)                                                                                                                                                                                                                           | Hooke's law<br>Poisson's ratio                                                                                                                                         | (4 marks)   |  |
|    | (b) | graph                                                                                                                                                                                                                                 | A steel reinforcement is subjected to tensile test and the stress-displacement graph resulted from the test is shown in <b>Figure Q1(a)</b> . Explain in details about |             |  |
|    |     | the graph.                                                                                                                                                                                                                            |                                                                                                                                                                        | (6 marks)   |  |
|    | (c) | <b>Figure Q(b)</b> shows a cantilever beam with fix support at point A. The beam is loaded with point load at point B and moment at point C.                                                                                          |                                                                                                                                                                        |             |  |
|    |     | (i)                                                                                                                                                                                                                                   | Calculate the reaction forces of the beam.                                                                                                                             | (3 marks)   |  |
|    |     | (ii)                                                                                                                                                                                                                                  | Draw the shear force diagram and bending moment diagbeam.                                                                                                              | ram for the |  |
|    |     |                                                                                                                                                                                                                                       |                                                                                                                                                                        | (12 marks)  |  |
| Q2 | (a) | List the assumptions that are required to define the bending stress of beams.  Provide sketches where necessary.  (5 marks)                                                                                                           |                                                                                                                                                                        |             |  |
|    | (b) | Figure Q2(a) shows a cross sectional diagram of a beam with its dimensions. The beam is subjected to a negative bending moment of 40 kNM, as given in Figure Q2(b). To determine the maximum bending stresses of the beam, calculate. |                                                                                                                                                                        |             |  |
|    |     | (i)                                                                                                                                                                                                                                   | Neutral axis of the beam, y'                                                                                                                                           | (7 marks)   |  |
|    |     | (ii)                                                                                                                                                                                                                                  | Moment of inertia about the z-axis, $I_z$                                                                                                                              | (7 marks)   |  |
|    |     | (iii)                                                                                                                                                                                                                                 | Maximum tensile stress                                                                                                                                                 | (3 marks)   |  |
|    |     | (iv)                                                                                                                                                                                                                                  | Maximum compressive stress                                                                                                                                             | (3 marks)   |  |
| Q3 | (a) | Expla                                                                                                                                                                                                                                 | Explain the definition and importance of shear flow in a built-up member, with aided of relevance equations and sketches.  (5 marks)                                   |             |  |



- (b) Based on the cross section given in **Figure Q3**.
  - (i) Calculate  $\overline{y}$  and  $I_{x-x}$

(ii) Identify the shear flow at B

(iii) Maximum spacing could be applied if the capacity of the nail is 450 N/nail.

(20 marks)

Q4 (a) Explain the buckling and torsion of a column.

(5 marks)

(b) **Figure Q4** shows a steel column that fixed at its bottom. The column is braced at its top by horizontal steel beam to prevent movement at top along x axis. If a pin support is considered at its top, determine the largest allowable load P that can be applied. Factor of safety for buckling = 3.0. Take  $E_{stl}$  = 90 GPa,  $\sigma_y$ = 250MPa, A=  $7.5 \times 10^{-3} \text{m}^2$ ,  $I_x$ = $65 \times 10^{-6} \text{m}^4$ ,  $I_y$ = $23 \times 10^{-6} \text{m}^4$ .

(10 marks)

- (c) A solid circular steel shaft of 2.0 m long transmits 400 kW at a speed of 400 rpm. If the allowable shearing stress is 80 MPa, the allowable angle of twist is 3° and the shear modulus of steel is 80 GPa. Determine:
  - (i) The minimum permissible diameter of the shaft.
  - (ii) The speed at the same power that can be delivered if the shearing stress does not exceed 50 MPa in a diameter of 90 mm.

(10 marks)

-END OF QUESTIONS-

SEMESTER / SESSION:

SEM II / 2016/2017

PROGRAMME CODE : BFF

COURSE

: MECHANICS OF MATERIAL COURSE CODE : BFC20903





FIGURE Q1(b)



SEMESTER / SESSION:

SEM II / 2016/2017

PROGRAMME CODE : BFF

COURSE

MECHANICS OF MATERIAL

COURSE CODE : BFC20903





SEMESTER / SESSION: SEM II / 2016/2017

PROGRAMME CODE : BFF

COURSE : MECHANICS OF MATERIAL COURSE CODE : BFC20903





SEMESTER / SESSION:

SEM II / 2016/2017

PROGRAMME CODE : BFF

COURSE

MECHANICS OF MATERIAL

COURSE CODE : BFC20903



CONFIDENTIAL