

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2017/2018**

COURSE NAME

FLUID MECHANICS

COURSE CODE

BFC10403

PROGRAMME CODE :

BFF

EXAMINATION DATE: JUNE/JULY 2018

DURATION

: 3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

DIF, MOHD AZLAN RIPI NIDHYE YUQOHE CONFIDENTIAL

BFC10403

Q1	(a)	Define	the	foll	owing	terms.
----	-----	--------	-----	------	-------	--------

- (i) Prossure
- (ii) Density
- (iii) Specific weight
- (iv) Specific gravity

(8 marks)

- (b) If 1 m³ of oil has a mass of 860 kg, determine the followings;
 - (i) Specific weight
 - (ii) Density
 - (iii) Specific gravity.

(6 marks)

(c) Calculate the minimum diameter of a glass tube if a capillary rise is not more than 0.25 mm and $\theta = 0$. Given, the surface tension = 0.075 N/m and specific weight of water, $\gamma = 9810 \text{ kg/m}^3$.

(6 marks)

Q2 (a) Determine the absolute pressure in unit kPa if barometer reads 60 kPa. Given that the barometer height at sea level is 740 mmHg and specific gravity of a mercury is 13.6.

(8 marks)

(b) Calculate the pressure difference (P_B-P_A) in double fluid manometer as shown in **Figure Q2(b).**

(12 marks)

- Q3 (a) Water is discharging from a tank through a convergent-divergent mouthpiece as shown in Figure Q3(a). Given the minimum diameter of the mouthpiece is 0.05 m and the head from the center-lined of the mouthpiece is 1.83 m. The atmospheric pressure is at 10 m of water. Assume that the losses are neglected and the exit of the mouthpiece is rounded.
 - (i) Determine the diameter at the exit if the absolute pressure at the minimum area is to be 2.44 m of water and calculate the discharge at that particular diameter.

 (8 marks)
 - (ii) Calculate the discharge if the divergent part of the mouthpiece is removed.

(6 marks)

BFC10403

- (b) Flow rate of mercury in a 150 mm diameter PVC pipe is 20 *l*/s. Given the specific gravity of mercury is 13.6, calculate the followings;
 - (i) Volume flow rate (m^3/s)
 - (ii) Mass flow rate (kg/s)
 - (iii) Weight flow rate (kN/s)

(6 marks)

Water flows at a rate of 0.5 m³/s and rising through a 50°, contracting pipe bend. The diameter at the bend entrance is 700 mm and at the exit is 500 mm as shown in **Figure Q4.** If the pressure at the entrance to the bend is 200 kN/m², determine the magnitude and direction of the force exerted by the fluid on the bend. The exit of the bend is 0.4 m higher than the entrance and the bend has a volume of 0.2 m³. Assume that the frictional losses can be neglected in the analysis.

(20 marks)

Q5 (a) A fluid flows through a galvanised iron pipe with length and diameter of 200 m and 400 mm respectively at a discharge of 55 l/s. Calculate the head loss due to fluid friction of pipe.

(Given
$$\rho = 850 \text{ kg/m}3$$
, $\mu = 8.14 \times 10^{-2} \text{ Pa.s}$, $1 \text{ m}^3 = 1000 \text{ l}$).

(7 marks)

(b) A fluid flows in series of pipe with a flow rate of 0.04 m³/s. Given that,

$D_1 = 30 \text{ cm}$	$D_2 = 20 \text{ cm}$	$D_3 = 40 \text{ cm}$				
$L_1 = 2000 \text{ m}$	$L_2 = 1000 \text{ m}$	$L_3 = 2000 \text{ m}$				
$f_1 = 0.022 \text{ m}$	$f_2 = 0.025 \text{ m}$	$f_3 = 0.021 \text{ m}$				
$Z_a = 20 \text{ m}, Z_b = 25 \text{ m}, Z_c = 32.5 \text{ m}, Z_d = 37.5 \text{ m}$						

Determine the pressure and total head at points A, B, C and D for the pipe series shown in **Figure Q5(b)**. Assume fully turbulent flow for all cases and the pressure head at point A is 40 m of water.

(13 marks)

BFC10403

Q6 (a) Describe the following terms,

- (i) Dynamic similarity
- (ii) Kinematic similarity
- (iii) Geometric similarity.

(9 marks)

(b) Assume that the drag force, F, exerted on a body is a function of the following parameters which include fluid density (ρ), fluid viscosity (μ), diameter (d), and velocity (ν). Prove that the drag force can be expressed as,

$$F = d^2 \mu^2 \rho \phi(\text{Re})$$

where ϕ is some unknown function and Re is the Reynolds number.

(11 marks)

- END OF QUESTIONS -

BFC10403

FINAL EXAMINATION SEMESTER/SESSION : SEM II / 2017/2018 PROGRAMME : BFF COURSE CODE : BFC 10403 COURSE NAME : FLUID MECHANICS Water. Glycenin. SG=1.26 SG=1.0 Oil SG=3.88 60 cm 10 cm l5 em 20 cm Mercury, SG=13.5 FIGURE Q2(b) FIGURE Q3(a)

FINAL EXAMINATION PROGRAMME : BFF SEMESTER/SESSION : SEM II / 2017/2018 COURSE CODE : BFC 10403 COURSE NAME : FLUID MECHANICS out Pipe section 50° in FIGURE Q4 В C D FIGURE Q5(b)

BFC10403

FINAL EXAMINATION

SEMESTER/SESSION : SEM II / 2017/2018

PROGRAMME : BFF COURSE CODE : BFC 10403 COURSE NAME : FLUID MECHANICS

Table Q6(b): Dimensionless and Quantity for Fluid Mechanics

Quantity	Symbol	Dimension
FUNDAMENTAL		
Mass	m	M
Length	L	L
Time	t	T
GEOMETRIC		
Area	A	L^2
Volume	V	L^3
Angle	θ	$M^0L^0T^0$
First area moment	Ax	L^3
Second area moment	Ax^2	L^4
Strain	е	Lo
DINAMIC		
Force	F	MLT ⁻²
Weight	W	MLT ⁻²
Specific weight	γ	ML ⁻² T ⁻²
Density	ρ	ML ⁻³
Pressure	P	ML ⁻¹ T ⁻²
Shear stress	τ	ML ⁻¹ T ⁻²
Modulus of elasticity	E, K	ML ⁻¹ T ⁻²
Momentum	M	MLT ⁻¹
Angular momentum		ML^2T^{-1}
Moment of momentum		ML^2T^{-1}
Force moment	T	ML^2T^{-2}
Torque	T	ML^2T^{-2}
Energy	E	L
Work	W	ML^2T^{-2}
Power	$\stackrel{\sim}{P}$	ML^2T^{-3}
Dynamic viscocity	μ	$ML^{-1}T^{-1}$
Surface tension	σ	MT ⁻²
KINEMATIC		
Linear velocity	U,v,u	LT ⁻¹
Angular velocity	ω	T-1
Rotational speed	N	T-1
Acceleration	$\frac{1}{a}$	LT ⁻²
Angular acceleration	α	T ⁻²
Gravity		LT ⁻²
Discharge	Q	$L^{3}T^{-1}$
Kinematic viscosity	$\begin{array}{c c} & \mathcal{Q} \\ \hline \mathcal{U} \end{array}$	L^2T^{-1}
Stream function	Ψ	L^2T^{-1}
Circulation	Γ	L^2T^{-1}

BFC10403

FINAL EXAMINATION

SEMESTER/SESSION : SEM II / 2017/2018

COURSE NAME : FLUID MECHANICS

PROGRAMME : BFF

COURSE CODE: BFC 10403

COMPLIMENTARY EQUATIONS:

$$h = \frac{2\sigma_s}{\rho gR} \cos \phi$$

$$h = \frac{2\sigma_s}{\rho gR} \cos \phi \qquad y_p = y_c + \frac{I_{xxC}}{\left[y_c + P_o / (\rho g \sin \theta)\right] A}$$

$$Re = \frac{\rho VD}{\mu} = \frac{DV}{v} \qquad F_r = \frac{V}{\sqrt{gL}} \qquad h_f = f\left(\frac{L}{D}\right)\frac{V^2}{2g}$$

$$F_r = \frac{V}{\sqrt{gL}}$$

$$h_f = f\left(\frac{L}{D}\right) \frac{V^2}{2g}$$

$$H = \frac{P}{\gamma} + z + \frac{V^2}{2g}$$
 $h_k = k \frac{v^2}{2g}$ $F = \sqrt{F_x^2 + F_y^2}$ $F_y = \rho gV$

$$h_k = k \frac{v^2}{2g}$$

$$F = \sqrt{F_x^2 + F_y^2}$$

$$F_y = \rho g V$$

$$F_x = \rho g A x$$

$$F_x = \rho g A \overline{x}$$
 $\phi = \tan^{-1} \frac{F_y}{F_x}$ $BM = \frac{I}{V}$ $W = mg$

$$BM = \frac{I}{V}$$

$$W = mg$$

$$R = \rho g V$$

$$R = \rho gV$$
 $\rho = \frac{M}{V}$ $P = \rho gh$ $\gamma = \rho g$

$$P = \rho g h$$

$$\gamma = \rho g$$

$$V = \sqrt{2gh}$$

$$V = \sqrt{2gh}$$
 $h_L = H - \frac{V_a}{2g}$ $Q = AV$ $C_d = C_c x C_V$

$$Q = AV$$

$$C_d = C_c x C_V$$

$$Q = C_d a \sqrt{2gH} \qquad C_v = \frac{x}{\sqrt{4yH}} \qquad \dot{m} = \rho AV \qquad C_V = \frac{V_a}{V}$$

$$C_{v} = \frac{x}{\sqrt{4yH}}$$

$$m = \rho AV$$

$$C_V = \frac{V_a}{V}$$

$$R_X = m(V_{X1} - V_{X2})$$
 $R_Y = m(V_{Y1} - V_{Y2})$ $f = \frac{64}{R_P}$

$$R_{\rm Y} = m(V_{\rm Y1} - V_{\rm Y2})$$

$$f = \frac{64}{\text{Re}}$$