

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2018/2019**

COURSE NAME

: MECHANICS OF MATERIAL

COURSE CODE

BFC20903

PROGRAMME CODE : BFF

EXAMINATION DATE :

JUNE/JULY 2019

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

BFC20903

Q1	(a)	Expla	in briefly with diagrams the following terms						
		(i)	Average normal stress	(1 mark)					
		(ii)	Average normal strain	(1 mark)					
	(b)	From Hooke's Law, define the relationship between							
		(i)	Stress (σ) and strain (ε)	(1 mark)					
		(ii)	Shear stress (τ) and shear strain (γ)	(1 mark)					
	(c)	Describe with diagrams the following terms							
		(i)	Young's modulus (E)	(1 mark)					
		(ii)	Shear modulus (G)	(1 mark)					
		(iii)	Poisson's Ratio (v)	(1 mark)					
	(d)	$\mathbf{Q1}(\mathbf{d})$ $\mathbf{L}_{o} = \mathbf{S}$	ess-strain diagram of a specimen made from ductile material is show). The specimen has an original diameter of $d_0 = 13.0$ mm and a gauge 52.0 mm. When the specimen is subjected to an axial load of 80 kN and $v = 0.3$, determine	ge length of					
		(i)	The average normal stress (σ)	(1 mark)					
		(ii)	The average normal strain (ε)	(1 mark)					
		(iii)	The new diameter (d)	(1 mark)					
		(iv)	The new length (L)	(1 mark)					

CONFIDENTIAL

Q2

BFC20903

(e)	Illustr	ate (with diagrams) the positive strain transformation equation for					
	(i)	Normal strain $(\varepsilon_{x'})$	(2 marks)				
	(ii)	Shear strain $(\gamma_{x'y'})$	(2 marks)				
(f)		the of plane strain of an element is shown in Figure Q1(f) , where $\varepsilon_x = 0$ and $\varepsilon_y = 0$, $\varepsilon_y = 0$, $\varepsilon_y = 0$, $\varepsilon_y = 0$ and $\varepsilon_y = 0$. Determine the following	=				
	(i)	Principal strains (ε_{max} , ε_{min})	(2 marks)				
	(ii)	Orientation of the principal strain (θ_p)	(2 marks)				
	(iii)	Maximum in-plane shear strain	(2 marks)				
	(iv)	Orientation of the maximum in-plane shear strain	(2 marks)				
	(v)	Sketch the deformed element under the state of principal strain and state of maximum in-plane shear strain	(2 marks)				
		ply supported beam W $5 \times 5 \times 19$ is shown in Figure Q2 . The detailiare shown in Table Q2 . Determine	ngs of cross				
	(i) Free body diagram, shear force and bending moment diagram by Method.						
	(ii)	The maximum bending moment (and where it occurs in the beam)	(5 marks)				
	(iii)	The maximum bending stress at that location, and also the bending s that location along the beam and 8 m from the bottom of the beam cross s (5					
	(iv)	Determine and draw the shear stress distribution for the beam section	on (10 marks)				

CONFIDENTIAL

BFC20903

A steel rectangular hollow section of weighting beam is given in Figure Q3(a). Q3 (a)

> Sketch the free body diagram of the beam. (i)

> > (4 marks)

Determine the maximum force that can be applied to the beam, if the allowable (ii) deflection at point B is $\delta = 10$ mm. Use double integration method to solve this problem.

Given:

Modulus of elasticity of steel beam

: 205 GPa

Moment of inertia

: 730 cm⁴

(11 marks)

An illustration of torsional laboratory testing on 2.5 m solid square timber beam is (b) given in Figure Q3(b). Calculate the maximum torque, T, that can be applied if the allowable shear stress is 4 N/mm² and allowable angle of twist is 0.05 rad.

Given;

Timber beam size

: 75 mm x 75 mm,

MOE of timber beam

: 15 GPa

Poisson ratio, v

: 0.25.

(10 marks)

Describe ONE (1) similarity and TWO (2) differences between strut and column. Q4 (a)

(5 marks)

Two structural steel angles back to back are used as a compression member that is 4.5 (b) m long. The angles are separated at intervals by spacer blocks and connected by bolts as shown in Figure Q4(b), a configuration which ensures that the double-angle shape acts as a unified structural member. Assume the pinned connections at each end of the column, and use E=200 GPa for the steel. A single angle has the following properties, A = 1600 mm, $I_x = 1.64 \times 10^6 \text{ mm}^4$, $I_y = 0.787 \times 10^6 \text{ mm}^4$, x = 19.7 mm. Determine the Euler buckling load for the double-angle column if the spacer block thickness is

(i) 5 mm

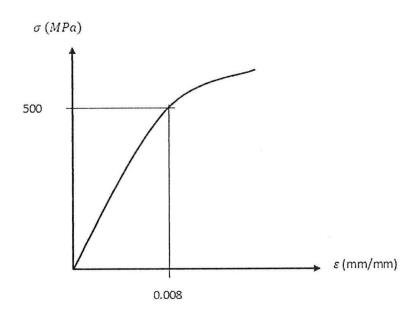
(10 marks)

(ii) 20 mm

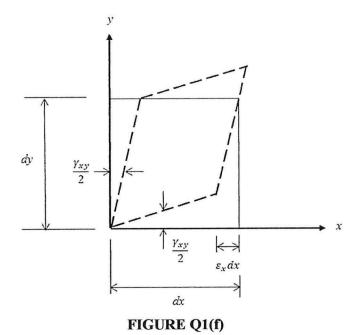
(10 marks)

- END OF QUESTIONS -

CONFIDENTIAL


SEMESTER/SESSION : SEM II / 2018/2019

COURSE NAME


: MECHANICS OF MATERIAL

PROGRAMME CODE: 2 BFF

COURSE CODE : BFC20903

FIGURE Q1(d)

SEMESTER/SESSION : SEM II / 2018/2019

COURSE NAME : MECHANICS OF MATERIAL

PROGRAMME CODE: 2 BFF

COURSE CODE : BFC20903

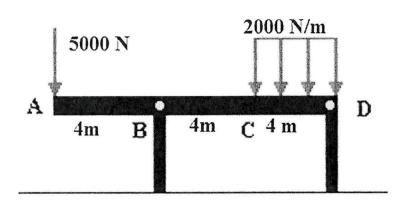


FIGURE Q2

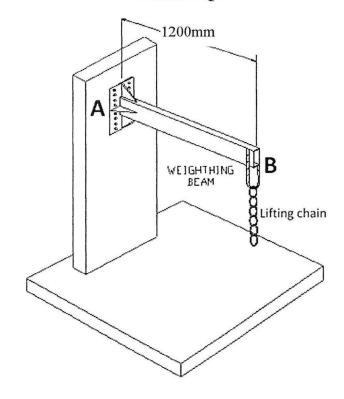


FIGURE Q3 (a)

SEMESTER/SESSION : SEM II / 2018/2019 COURSE NAME

: MECHANICS OF MATERIAL

PROGRAMME CODE: 2 BFF

COURSE CODE : BFC20903

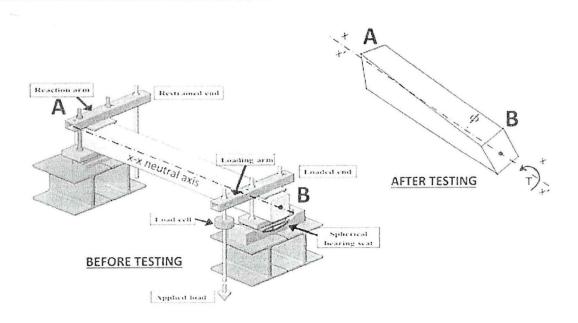


FIGURE Q3 (b)

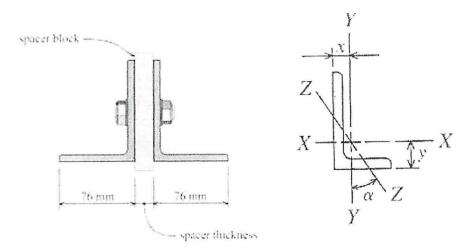
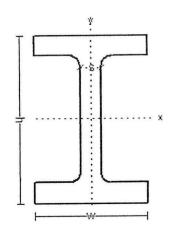



FIGURE Q4(b)

SEMESTER/SESSION : SEM II / 2018/2019 PROGRAMME CODE : 2 BFF COURSE NAME : MECHANICS OF MATERIAL COURSE CODE : BFC20903

PROGRAMME CODE: 2 BFF

TABLE Q2

						Static Parameters				
Desig	Dimensions				Moment of Inertia		Elastic Section Modulus			
Imperal (in x in x lb/ft)	Metric (mm x mm x kg/m)	Depth - h - (mm)	Width • w • (mm)	Web Thickness • S • (mm)	Sectional Area (cm²)	Weight (kg/m)	l _x (cm ⁴)	L _y (cm ⁴)	S _x (cm³)	S _y (cm³)
W 4 × 4 × 13	W 100 x 100 x 19.3	106	103	7.1	24 7	19.3	475 9	160 6	89 9	31.2
W 5 x 5 x 16	W 130 x 130 x 23.8	127	127	6.1	30.4	23.8	885.5	311	139.5	49
W 5 x 5 x 19	W 130 x 130 x 28.1	131	128	6.9	35 9	28.1	1099	381.4	167.7	59.6
W6x4x9	W 150 x 100 x 13.5	150	100	4.3	17.3	13.5	685.5	91.8	91.4	18.4
W 6 x 4 x 12	W 150 x 100 x 18.0	153	102	5.8	22 9	18	915.9	125 9	122.1	25.4
W 6 x 4 x 16	W 150 x 100 x 24.0	160	102	6.6	30.6	24	1342	182.6	167.8	35.8

SEMESTER/SESSION : SEM II / 2018/2019 COURSE NAME : MECHANICS OF MATERIAL

PROGRAMME CODE: 2 BFF

COURSE CODE : BFC20903

Formula:

$$G = \frac{MOE}{2(1+v)}$$
 $\tau_{all.} = \frac{4.81T}{a^3}$ $\phi_{all.} = \frac{7.10TL}{a^4G}$

$$\tau_{all.} = \frac{4.81T}{a^3}$$

$$\phi_{all.} = \frac{7.10TL}{a^4 G}$$

9