

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2009/2010

SUBJECT NAME SUBJECT CODE COURSE EXAMINATION DATE : APRIL/MAY 2010 **DURATION** INSTRUCTION

: DISCRETE STRUCTURE BIT 1113 : 1 BIT : : 2 HOURS AND 30 MINUTES ANSWER ALL QUESTIONS IN . PART A AND FIVE (5) QUESTIONS ONLY FROM SIX (6) QUESTIONS IN PART B.

THIS PAPER CONTAINS FIVE (5) PAGES

PART A

Instruction: Answer ALL questions.

Q1 (a) Define proposition.

(2 marks)

(b) Determine whether each of these implications is **TRUE** or **FALSE**.

- (i) if 1+1 = 2, then 2+2 = 3
- (ii) if buffalos can fly, then 1+1 = 3
- (iii) if 1+1 = 2, then buffalos can fly

(6 marks)

Q2 (a) Given the power set of A is: $P(A) = \{\emptyset, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}\}$

- (i) List the elements of set A.
- (ii) What is |A|?

(4 marks)

(b) Let $A = \{3, 6, 9\}$ and $B = \{2, 4, 6, 8\}$. Let $R = \{(3, 2), (6, 2), (9, 6), (6, 8)\}$ be a relation. Is R a function from A to B? Explain your answer. (4 marks)

Q3 Given the following statement:

(b) $\sim p \rightarrow (q \rightarrow r)$

Let P(x), Q(x), and R(x) be the statements "x is a student", "x is clever", and "x is successful", respectively.

Express each of the following statements using quantifiers and logical connectives, where the universe of discourse is the set of all people.

- (i) All students are clever
- (ii) All clever people are successful
- (iii) No students are not clever

(6 marks)

Q4 Construct truth tables for the following statements. (a) $(p \lor \sim q) \rightarrow r$

(3 marks)

(3 marks)

Q5 A sequence b_0 , b_1 , b_2 ... b_n is defined by letting $b_0=7$ and $b_i=b_{i-1}-4$ for all integers $i \ge 1$. What is a general formula for this sequence for all integers $n \ge 0$.

(4 marks)

Q6 Based on FIGURE Q6,

FIGURE Q6

(a) List the relation R.

(2 marks)

(b) Find the domain and range.

(2 marks)

Q7 Determine whether the directed graph in **FIGURE**.Q7 is Euler circuit or Euler path. Explain your answer (use the degree of. vertices)

(4 marks)

3

BIT1113

PART B

Q9

Answer FIVE (5) questions only.

Q8 (a) Based on the following relations, assign these pairs (1,1), (1,2), (2,1), (2,2) to appropriate relations.

(i) $R1 = \{(a,b) | a \le b\}$ (ii) $R2 = \{(a,b) | a > b\}$

(4 marks)

- (b) Given the set {1, 2, 3, 4}, decide whether the following relations is reflexive, symmetric or transitive.
 - (i) {(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)} (ii) {(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)} (iii) {(1,2),(2,3)(3,4)}

(4 marks)

(a) Write an algorithm to find the maximum value from three numbers; a, b, c. (4 marks)

(b) Answer all the questions based on a graph given in **FIGURE Q9**.

Find the:

(i) length of the shortest path from a to i.

- (ii) length of the shortest path from a to z.
- (iii) length of the shortest path from a to z that passes through c.

(4 marks)

- Q10 Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 2, 4, 6, 8\}$. Suppose R is a relation from A to B which is defined as follows. Write down the elements of R.
 - (a) $x R y \leftrightarrow x \ge y$.

(2 marks)

- BIT1113
- (b) $x R y \leftrightarrow x y$ is even.

(c) x Ry + y = 7.

(3 marks)

(3 marks)

Q11 (a) Let $A = \{1, 3, 5\}$ and $B = \{s, t, u, v\}$. A function f is given in FIGURE Q11 below.

FIGURE Q11

(i) Identify the domain and co-domain for function f. $\{i_{a}, a\}, i_{a}, b, j, b, c, j, c, d, j, (d, a), (d, b)\}$

(3 marks)

Q12 (a) Prove that $6 \times 7^n - 2 \times 3^n$ is divisible by 4

(b) Show that $\frac{n^2 + 2n}{(2n+1)}$ is O(n²)

Q13 Solve the following recurrence relation,

 $a_n = 8a_{n-1} - 16a_{n-2}$, where $a_0 = 1$, $a_1 = 2$. (8 marks)

(4 marks)

5