

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2010/2011

COURSE NAME	:	DISCRETE STRUCTURE
COURSE CODE	:	BIT 1113 / BIT 11103
PROGRAMME	:	BACHELOR OF INFORMATION TECHNOLOGY
EXAMINATION DATE	:	APRIL/MAY 2011
DURATION	:	2 ¹ / ₂ HOURS
INSTRUCTION	:	ANSWER FOUR (4) QUESTIONS ONLY.

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

Q1 (a) Show that
$$\sim (p \land q) = \sim p \lor \forall \sim q$$
, where p and q are propositions.

(3 marks)

(b) Use De Morgan's law to show that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

(3 marks)

(c) Find the converse, opposite, and contrapositive of the implication: "If I scored in the examination, then I have RM1000 rewards"

(4 marks)

1

Q2 List the elements of these sets, where *n* is of type integer. (a)

(i)
$$(n - 5 + n \text{ divides } 24)$$
.
(ii) $\cos \frac{n}{2} + 1 < n \le 6, \pi = 180^{\circ}$.
(4 marks)

(b) Let $A = \{ student_i | student_i \in Table 1, and i = 1, 2, 3 \}$, and $B = {sub_i | sub_i \in Table 1, i=1, 2, 3, 4}$

	Sub ₁	Sub ₂	Sub ₃	Sub ₄
student1	85	90	72	68
student ₂	78	89	90	57
student ₃	80	85	68	75

Table 1 · Students vs Subjects

Find, A x B for $(a_i, b_i) > 80$. From Table 1, where $a_i \in A$ and $b_i \in B$, i=1, 2, 3and j = 1, 2, 3, 4.

(3 marks)

What is the power set of the set $\{v, w, x, y, z\}$? (3 marks) the question

Q3 Let Z be the set of integers and $m \in Z$. Let R be the relation on Z defined by (a) aRb if a-b is a multiple of m. Show that R is an equivalence relation on Z. (5 marks)

(b) Given an equivalent relation,

> $\mathbf{R} = \{ (1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,2), (3,3), (3,5), (4,2), (4,2), (3,3), (3,5), (4,2), (3,3), (3,5), (4,2), (3,3), (3,5), (4,2), (3,3), (3,5), (3,5), (4,2), (3,5), (3,5), (3,5), (4,2), (3,5), (3,5), (3,5), (3,5), (4,2), (3,5), (3,5), (3,5), (4,2), (3,5), (3,5), (3,5), (4,2), (3,5), (3,5), (3,5), (3,5), (3,5), (3,5), (3,5), (4,2), (3,5)$ $(4,4),(5,5),(5,1),(5,3),(6,6),(6,7),(7,1),(7,3),(7,5)\},$

on $X = \{1, 2, 3, 4, 5, 6, 7\}$.

The equivalent class [1] containing I consists of all x such that $(1, x) \in \mathbf{R}$. Find the partition of R?

(5 marks)

BIT1113/BIT11103

Q4 (a) Solve the recurrence relation $T(n) = T(n/2) + \log(n)$ where T(1) = 1, $n=2^k$ and k is a non-negative integer.

(5 marks)

(b) What is the solution of the recurrence relation $a_{n+2}-8a_{n+1}+16a_n=0$ with initial condition $a_0=5$ and $a_1=16$.

(5 marks)

- Q5 (a) Let $A = \{a \mid 1 \le a \le 6, a \in N\}$. If we define a relation H on A such that $(a, b) \in H$ if $a \ge b+1$, $a, b \in A$.
 - (i) Obtain H.
 - (ii) Draw the digraph for H.
 - (iii)What is the in-degrees and out-degrees of all vertices.

(5 marks)

(b) Consider the following weighted graph G. From Figure Q5(b), apply Djikstra's algorithm from vertex v_0 to vertex v_i .

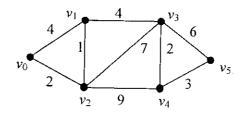


Figure Q5(b)

(5 marks)