CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2011/2012

COURSE NAME	:	ALGORITHM ANALYSIS
COURSE CODE	:	BIT 3173/ BIT 31703
PROGRAMME	:	BACHELOR OF INFORMATION TECHNOLOGY
EXAMINATION DATE	:	JANUARY 2012
DURATION	:	2 HOURS 30 MINUTES
INSTRUCTION	:	ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

Instruction : Answer ALL questions.

Q1 (a) Show that
$$4 + \sum_{i=1}^{n} i \le 5n^2$$

(4 marks)

(b) Consider the algorithm,

```
1 get the positive integer from input
2 if n > 1
3 print " the value of n is ...."
4 for i=1 to n
5 for j =1 to i
6 print i+j
7 print "done"
```

Estimate the time complexity for the above algorithm based on step count.

(6 marks)

Q2 (a) Transform the term
$$\frac{n^2(n+1)^2}{4}$$
 into recurrence relation (recursive form).

(6 marks)

(b) Give a recursive algorithm for the term in Q2(a).

(4 marks)

Q3 (a) Write a Kruskal's algorithm for minimum spanning tree (weighted graph) issue.

(4 marks)

(b) Use Kruskal's algorithm to find a minimum spanning tree in the weighted graph below.

(6 marks)

Q4 (a) Suppose that a computer can execute an operation of an algorithm in 10^{-15} seconds.

What is the largest size problems that can be solved on a such machine for different durations and running times for **Figure 1** below.

	n	n ²	n ³	2 ⁿ	n ⁿ
1 hour					
10 hours					
100 hours					
1000 hours					

Figure 1 : The largest size problems that can be solved.

(6 marks)

(b) Convert the satisfiable statement $(A \cup B) \rightarrow (C \rightarrow D)$ into conjunctive normal form (CNF), where A,B,C and D are literals.

(4 marks)