

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER I **SESSION 2012/2013**

COURSE NAME : GRAPHIC PROGRAMMING

COURSE CODE

: BIT 2023/BIT 20203

PROGRAMME : 2 BIT

EXAMINATION DATE : DECEMBER 2012 / JANUARY 2013

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS.

THIS QUESTIONS PAPER CONSISTS OF FIVE (5) PAGES

#### BIT 20203/BIT 2023

| C | F | C   | ГТ | U.  | N | Λ |
|---|---|-----|----|-----|---|---|
|   |   | • . |    | • • |   | ~ |

Instruction: State whether the following statements are TRUE or FALSE.

Q1 A Discriminator Function has properties considering points inside, outside and on a circle. Q2 Midpoint Ellipse algorithm emphasizes on sampling direction. Q3 The evaluateViewMappingMatrix() is used to define about the viewing reference system. **Q4** Translation distance pair  $(t_x, t_y)$  is called *shift vector*. Q5 Any positive and negative value can be assigned to scaling factors  $s_x$  and  $s_y$ . **Q6** Image is generated relative to an axis of reflection by rotating the object 360° about the reflection axis. In raster algorithm, we sample at unit intervals & determine the closest pixel position to the **Q7** specified circle path at each step. Cohen-Sutherland Line Clipping algorithm is used in clipping a polygon against successive **Q8** window boundary. **Q9** Shear is a transformation that produces a mirror image of an object. In OpenGL, we rotate objects about the axes x, y and z with the function Q10 glRotated(angle, x, y, z). (10 marks)

#### BIT 20203/BIT 2023

### **SECTION B**

Instruction: Answer ALL questions.

### Q11 Describe the function for each OpenGL statement below.

(a) glClearColor(1.0, 1.0, 1.0,1.0);

(2 marks)

(b) glEnd();

(2 marks)

(c) glViewport(0,0,w,h);

(2 marks)

(d) glTranslatef(4.0,0.0,0.0);

(2 marks)

(e) glutInitWindowPosition(0,0);

(2 marks)

Q12 Given the ellipse parameters are  $r_x = 8$  and  $r_y = 6$ , use the following midpoint ellipse algorithm to:

a) calculate each possible pixel coordinates along the ellipse path in the first quadrant. Copy the following Table 1 onto your answer script with complete calculations.

(16 marks)

Table 1: Ellipse pixel coordinates

| k | $p1_k$                                | $(x_{k+1}, y_{k+1})$ | $2r_y^2x_{k+1}$ | $2r_x^2y_{k+1}$ |
|---|---------------------------------------|----------------------|-----------------|-----------------|
| 0 |                                       |                      |                 |                 |
| 1 | · · · · · · · · · · · · · · · · · · · |                      |                 |                 |
| 2 |                                       |                      |                 |                 |
| 3 | · · · · · · · · · · · · · · · · · · · |                      |                 |                 |
| 4 |                                       |                      |                 |                 |
| 5 |                                       |                      |                 |                 |
| 6 |                                       |                      |                 |                 |

b) plot the pixel coordinates.

(4 marks)

#### BIT 20203/BIT 2023

Q13 Given the circle radius is 5, use the following midpoint circle algorithm to:

$$\begin{split} P_0 &= 1 - r \\ p_{k+1} &= p_k + 2x_{k+1} + 1 \\ p_{k+1} &= p_k + 2x_{k+1} + 1 - 2y_{k+1} \\ w_{here} \ 2x_{k+1} &= 2x_k + 2 \ and \ 2y_{k+1} = 2y_k - 2 \end{split}$$

(a) calculate each possible pixel coordinates along the circle octant in the third quadrant from x=0 to x=y. Copy the following Table 2 onto your answer script with complete calculations.

(12 marks)

Table 2: Midpoint circle pixel coordinates

| k | Pk | $(x_{k+1}, y_{k+1})$ |
|---|----|----------------------|
| 0 |    |                      |
| 1 |    |                      |
| 2 |    |                      |

(b) plot the pixel coordinates.

(3 marks)

Using the following scaling and rotation functions, write a complete program that will illustrate scaling transformation (from object A to object B) as depicted in Figure Q14. Given that scaling factor  $(s_x, s_y) = (3, 3)$ , coordinate for object A =  $\{\{5, 5\}, \{15, 5\}, \{10, 30\}\}$  and object A are black in color and B are green in color.

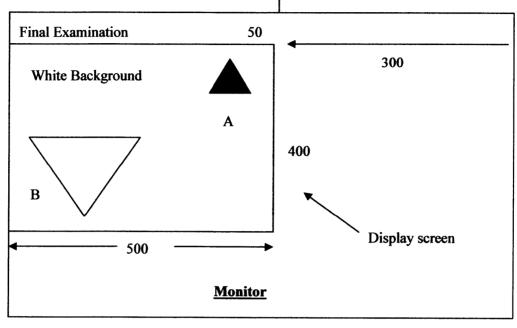



FIGURE Q14

(20 marks)

- Q15 Describe about the *Two-Dimensional Viewing Pipeline* using appropriate diagram. (10 marks)
- Q16 Compare between the techniques used in Cohen-Sutherland Line Clipping algorithm and Nicholl-Lee-Nicholl (NLN) Line Clipping algorithm. Write at least **THREE** (3) comparisons by supporting it with appropriate diagrams.

  (15 marks)