

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME

: DATA STRUCTURE AND

**ALGORITHMS** 

COURSE CODE

: BIT 10703

PROGRAMME CODE

: BIT

EXAMINATION DATE

: JUNE / JULY 2016

DURATION

: 2 HOURS AND 30 MINUTES

INSTRUCTION

: A) ANSWER ALL QUESTIONS

B) PLEASE WRITE YOUR

ANSWERS IN THIS QUESTION

**BOOKLET** 

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

ON NOON AZAM BINGT TAKISUDIN

CONFIDENTIAL

Telmologi Makhumat

Partile Sains Komputt

Universiti Tha Huseda Ona Malaysia

Q1 Answer Q1(a)-Q1(c) based on Figure Q1. Figure Q1 shows a linked list of employee data. Each node contains employee number, employee name, monthly salary and pointer to another node.



Figure Q1

(a) Declare a structure using struct statement to enable the data to be kept in the node. (5 marks)

Answer:

(b) Assume the data have been input to the linked list in **Figure Q1** and head is a pointer that contains the address of the first node in the linked list. Write a program fragment that will determine sum and average of the salary.

(15 marks)

(c) Write a program fragment to display names and salaries of all employees in the linked list using a looping statement.

(10 marks)

Answer:

Q2 (a) Figure Q2(a) shows a series of operations for a stack, \$1. Determine the content of \$1 using a linked list structure and the output of the

program fragment.

```
push(&s1,100);
push(&s1,200);
push(&s1,300);
push(&s1,400);
push(&s1,500);
push(&s1,600);
x=pop(\&s1); printf("data= %d\n",x);
x=pop(\&s1); printf("data= %d\n",x);
x=pop(\&s1); printf("data= %d\n",x);
push(&s1,-10);
push(&s1,-11);
push(&s1,-12);
push(&s1,-13);
push(&s1,-14);
x=pop(\&s1); printf("data= %d\n",x);
x=pop(\&s1); printf("data= %d\n",x);
x=pop(\&s1); printf("data= %d\n",x);
push(&s1,25);
```

Figure Q2(a)

(12 marks)

(b) Figure Q2(b) shows a series of operations for a queue, q1. Determine the content of q1 using a linked list structure and the output of the program fragment.

```
enqueue (&q1,125);
enqueue (&q1,277);
enqueue(&q1,394);
enqueue(&q1,178);
enqueue(&q1,-15);
enqueue(&q1,-65);
x=dequeue(&q1); printf("data= %d\n",x);
x=dequeue(&q1); printf("data= %d\n",x);
x=dequeue(\&q1); printf("data= %d\n",x);
enqueue(&q1,200);
enqueue(&q1,781);
enqueue(&q1,882);
enqueue(&q1,113);
enqueue(&q1,-29);
x=dequeue(&q1); printf("data= %d\n",x);
x=dequeue(\&q1); printf("data= %d\n",x);
x=dequeue(\&q1); printf("data= %d\n",x);
enqueue(&q1,100);
```

Figure Q2(b)

(12 marks)

Answer:

(c) Describe a difference between stack operations and queue operations. (1 mark)

4

Q3 Answer Q3(a) and Q3(b) based on Figure Q3. Figure Q3 shows an array of eight integer values.

int nums[NUMEL] = {22,5,67,98,45,32,74,135};

## Figure Q3

Show the sequence of the values in the array after the fifth pass upon execution of the following sorting algorithms:

(a) bubble sort

(10 marks)

Answer:

(b) selection sort

(10 marks)

Q4 (a) Figure Q4(a) shows a binary tree representation of integer values. Determine result for each traversal algorithm for the binary tree.



Figure Q4(a)

(15 marks)

Answer:

| Answer:             |        |
|---------------------|--------|
| Traversal algorithm | Result |
| Preorder            |        |
| Inorder             |        |
| Postorder           |        |

(b) Figure Q4(b) shows few lines of binary search implementation in a function. If the desired value can be found in the array list, the function will return the index of the value (location of the value in the array), else a value of -1 is to be returned. Complete the coding for the function binarySearch in Figure Q4(b).

6

(10 marks)

```
#include <stdio.h>
#define TRUE 1
#define FALSE 0
#define NUMEL 10
void main(void)
 int nums[NUMEL] = \{22,5,67,98,45,32,81,99,73,10\};
int item, location;
int binarySearch(int [], int, int);
location = binarySearch(nums,NUMEL,99);
if (location>-1)
 printf("\nThe item is found at index: %d",location);
 else
  printf("\nThe item is found at index: %d",location);}
int binarySearch(int list[],int size, int value)
int index, found, left, right, midpt;
  index = -1;
  found = FALSE;
  left = 0;
  right = size-1;
  Answer:
 return(index);}
```

Figure Q4(b)

## - END OF QUESTION -