

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

PEPERIKSAAN AKHIR SEMESTER II SESI 2008/2009

NAMA MATA PELAJARAN: MESIN ELEKTRIK DAN PEMACU

KOD MATA PELAJARAN : DEK 3143

KURSUS : 3 DEE/DET/DEX

TARIKH PEPERIKSAAN : APRIL/MEI 2009

JANGKAMASA : 2 1/2 JAM

ARAHAN : JAWAB EMPAT (4) SOALAN SAHAJA

DARIPADA LIMA (5) SOALAN

KERTAS SOALAN INI MENGANDUNGI LIMA (4) MUKA SURAT

Explain the differences between ideal and practical transformers by using 01 **(8)** schematic diagram.

(4 marks)

A 20 kVA, 6000/415 V, 50 Hz transformer has the following equivalent (b) circuit parameter:

> $R_p = 30 \Omega$ $X_p = 40 \Omega$ $R_4 = 0.6 \Omega$ $X_1 = 0.8 \Omega$ $X_m = 40 \text{ k}\Omega$ $R_m = 100 \text{ k}\Omega$

- Draw the equivalent circuit with the necessary parameters of the (i) transformer referred to the high voltage side.
- Determine the efficiency of the transformer when its work at (ii) 400V , 15kW and 0.8 power factor lagging.

(|| marks)

Briefly explain short-circuit and open-circuit tests to measure parameter (c) of the transformer.

(10 marks)

- A compound DC motor rated at 415 V, 10 HP, 1500 rpm has armature Q2 (a) resistance $0.35~\Omega$, series field resistance $0.65~\Omega$ and shunt field resistance $80~\Omega$. The rotational losses are 500~W. The full load line current is 40~A. Draw the schematic diagram and calculate:
 - (i) Input power
 - Developed mechanical power (ii)
 - (iii) output power
 - Load torque (jv)
 - Developed torque (v)
 - Efficiency of the motor (vi)

(11 marks)

- Describe how to generate AC and DC signals for machinery application. (b) (8 marks)
- The performance characteristics of a dc machine are greatly influenced by (c) the way in which the field winding is excited with direct current. There are two ways of exciting a dc machine, shunt and series excitation. Using a schematic diagram, explain the differences between shunt and series motors.

(6 marks)

Q3 (a) A 415 V, 50 Hz, 20-hp, 4-pole, Y connected induction motor has the following impedances in ohms per phase referred to the stator circuit:

$$R_s = 0.65\Omega$$
 $R_R = 0.45\Omega$ $X_s = 1.25\Omega$ $X_R = 0.65\Omega$ $R_c = \infty$

At full load condition, the rotational losses are 1200W and assumed to be constant. The core loss is lumped in with the rotational losses. For a rotor slip of 3% at the rated voltage and rated frequency, using approximate equivalent circuit, find the motor's

- (i) Speed
- (ii) Stator current
- (iii) Power factor
- (iv) Input power
- (v) air gap power
- (vi) converted power
- (vii) torque induced by the motor
- (viii) load torque
- (ix) starting torque
- (x) efficiency of the motor
- (xi) power flow diagram

(25 marks)

- Q4 (a) Sketch and explain the advantages of salient and cylindrical rotors. (6 marks)
 - (c) A three phase, delta connected synchronous generator is rated 120 kVA, 1.5 kV, 50 Hz, 0.75 pf lagging. Its synchronous inductance is 2.0mH and effective resistance is 2.5 Ω.
 - (i) Determine the voltage regulation at this frequency
 - (ii) Determine the rated voltage and apparent power if the supply frequency is going to be twice.
 - (iii) Determine the voltage regulation if the frequency is increased to 120% of the original frequency.
 - (iv) Draw the phasor diagram to represent E_s , I_s and V_t .

(19 marks)

- Q5 (a) Explain the operation, sketch the output characteristic and the symbol of the following devices.
 - IGBT, Insulated Gate Bipolar Transistor
 - (ii) SCR, Silicon-Controlled Rectifier

(10 marks)

(b) State and explain briefly three methods of speed control for DC motors. (15 marks)