

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2010/2011**

COURSE

: ELECTRICAL MEASUREMENT AND

INSTRUMENTATION

COURSE CODE

: BEE 2123

PROGRAMME

: BEE

EXAMINATION DATE : APRIL/MAY 2011

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER FOUR (4) QUESTIONS ONLY

THIS PAPER CONSISTS OF 6 PAGES

Q1	(a)	A PMMC instrument with a 600Ω coil resistance gives full scale deflection (FSD) with a 450μ A coil current. The instrument will be converted into a dc ammeter with a 11Ω shunt resistance.			
		(i)	Draw the circuit.	(5 marks)	
		(ii)	Derive the formula of the FSD current.	(5 marks)	
		(iii)	Calculate the FSD current.	(5 marks)	
	(b)	instruı	ammeter is constructed of a PMMC instrument and shun ment has a $1.5 k\Omega$ coil resistance and $50 \mu A$ FSD current, at at 0.25 FSD is $200 \mu A$.		
		(i)	Derive the formula of the shunt resistor.	(5 marks)	
		(ii)	Calculate the shunt resistance.	(5 marks)	
Q2	(a)		MC instrument with a 1 k Ω coil resistance is to be used as ensitivity of the voltmeter is 12.5k Ω /V while its FSD is 50V		
		(i)	Draw the circuit.	(5 marks)	
		(ii)	Derive the formula of the multiplier resistor.	(5 marks)	
		(iii)	Calculate the multiplier resistance.	(5 marks)	
	(b)	voltme	oltages at opposite ends of a $100\Omega \pm 5\%$ resistor are measured as $V_1 = 15V$ and $V_2 = 5V$. The measuring accuracies a 3% for V_2 .		
		(i)	Calculate the power dissipated by the resistor.	(5 marks)	
		(ii)	Specify its accuracy.	(5 marks)	

Q3	(a)	A half-wave rectifier is used with a PMMC instrument and a series resistor for AC voltage measurements. A shunt resistor is included to ensure a satisfactory rectifier forward current level. An additional diode minimizes reverse leakage current. The PMMC instrument has a 200Ω coil resistance and a 1mA FSD current. The ac voltmeter is required to give $10V_{rms}$ for FSD.			
		(i)	Draw the circuit.	(5 marks)	
		(ii)	Derive the equation of the multiplier resistor.	(5 marks)	
		(iii)	Calculate the multiplier resistance.	(2.5 marks)	
	(b)	A full-wave rectifier is used with a PMMC instrument and a series resistor for ac voltage measurements. The PMMC instrument has a 250Ω coil resistance and a 1mA full scale deflection current. The ac voltmeter is required to give $10V_{rms}$ for full scale deflection.			
		(i)	Draw the circuit.	(5 marks)	
		(ii)	Derive the equation of the multiplier resistor.	(5 marks)	
		(iii)	Calculate the multiplier resistance.	(2.5 marks)	
Q4	(Z ₁) is variable	a 0.5μF resistan	calanced at a frequency of 1 kHz and has the following constate capacitor in parallel with a $1k\Omega$ resistor, arm AD (Z_2) is ce, arm BC (Z_3) is a $0.5\mu F$ pure capacitance and arm CD for C_x and a resistor R_x in series.	a 2kΩ pure	
	(a)	Draw ci	rcuit of the bridge.	(10 marks)	
	(b)	Derive t	the balance condition to obtain the equation of arm $CD(Z_x)$.	(10 marks)	
	(c)	Determi	ine the values of the components in arm $CD(Z_x)$.	(5 marks)	

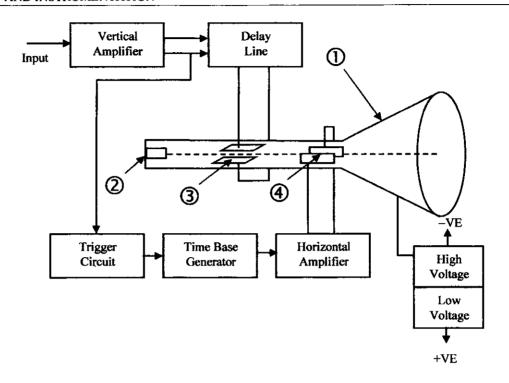
Q5	(a)	Figure Q5(a) shows basic diagram of an oscilloscope.		
ŲS	(a)	1 iguit Q5(a) silows busic diagram of an osemoscope.		
		(i) Identify numbered components in the figure. (8 marks		
		(ii) Explain the operation of the oscilloscope. (7 marks		
	(b)	A Lissajous pattern as shown in Figure Q5(b) is displayed on the screen of the oscilloscope when the X input of Channel 1 is a sinusoidal waveform from signal generator with 3 kHz frequency. Calculate the frequency of the unknown sinusoidal waveform in Y input of Channel 2. (10 marks)		
Q6	(a)	Explain the difference between sensor and transducer? (5 marks		
	(b)	Describe the passive and active transducers. Give two examples for each of them. (5 marks		
	(c)	A resistive position transducer with a resistance of $10~k\Omega$ and a shaft stroke of 8 cm with a bridge circuit is used to measure the bumpiness of a roadway by moving it to the right as shown in Figure Q6(c). The initial position to be used as a reference point is when the shaft is at midstroke like in the figure.		
		(i) Draw the equivalent circuit of the system. (5 marks		
		(ii) Derive the formula for V_{out} in terms of the value of resistors in the circui (4 marks		
		(iii) What is the value of V_{out} when the shaft of the transducer is at initial position?		
		(2 marks		

What will the value of V_{out} be if the shaft has reached point A?

(4 marks)

(iv)

BEE 2123 FINAL EXAMINATION


SEMESTER/SESSION: SEMESTER II/2010-2011

PROGRAMME: BEE

COURSE: ELECTRICAL MEASUREMENT

COURSE CODE: BEE 2123

AND INSTRUMENTATION

Figure Q5(a)

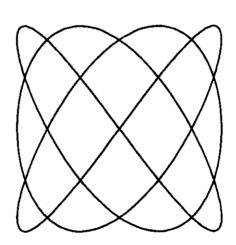


Figure Q5(b)

BEE 2123 FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2010-2011

PROGRAMME: BEE

COURSE: ELECTRICAL MEASUREMENT

COURSE CODE: BEE 2123

AND INSTRUMENTATION

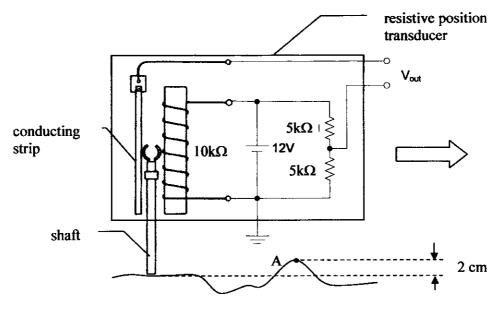


Figure Q6(c)