CONFIDENTIAL

t

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2010/2011

COURSE

: ELECTRICAL TECHNOLOGY

COURSE CODE

PROGRAMME

EXAMINATION DATE

DURATION

INSTRUCTION

: BEE 1123/10403

: 1 BEE

: APRIL/MAY 2011

: 2 HOURS 30 MINUTES

: ANSWER ALL QUESTIONS

THIS PAPER CONSIST OF NINE (9) PAGES

Q1 (a) (i) Briefly define peak-to-peak, V_{pp} , peak, V_p , and root mean square value, V_{rms} , of a sine wave voltage.

(3 marks)

(ii) Illustrate the sine wave value in Q1 (a) (i) in a sine wave diagram and express the equation that shows the relationship between the root mean square, V_{rms} , and peak-to-peak voltage values, V_{pp} , with the peak voltage values, V_p .

(4 marks)

- (b) Consider the sine wave voltages shown in Figure Q1(b). The frequency of each signal is f = 50 Hz.
 - (i) State the time domain expression for each voltage in the form of $V_m \cos(\omega t + \varphi)$.

(4 marks)

(ii) Determine the instantaneous value of each voltage in Figure Q1(b) if the phase angle, θ equal to 45°

(3 marks)

(iii) Sketch the phasor diagrams for all the sine wave voltage in Figure Q1(b).

(4 marks)

(iv) Determine the phase relationship between V_1 and V_2 and between V_1 and V_3

(2 marks)

(c) Solve the following complex number and leaves the result in polar form.

(i)
$$\frac{15\angle 45^{\circ}}{-3-j4} + j2$$

(ii)
$$\frac{8 \angle -20^{\circ}}{(2+j)(3-j4)} + \frac{10}{-5+j12}$$

(5 marks)

Q2 (a) Explain briefly what is Lenz's law.

(1 mark)

- (b) Figure Q2(b) shows the variation of X_L and X_c for a series RCL circuits with frequency, f. Based on the graph, explain how the circuit behaves at:
 - (i) High frequency
 - (ii) Low frequency

(4 marks)

- (c) Figure Q2(c) is a series circuit with the input voltage, v_s (t) = 240 cos(314t + 30⁰) V, R = 100 Ω , L = 0.3 H and C = 40 μ F. Assume the frequency is 50 Hz. Determine:
 - (i) the total equivalent impedance of the circuit, Z_{eq} in polar form. (3 marks)
 - (ii) the steady-state current of the circuit, $i_1(t)$. (3 marks)
 - (iii) the phasor voltage across each element.

(3 marks)

(iv) Construct a phasor diagram showing all the current and the voltages in the circuit.

(2 marks)

- (d) Let say R, L and C in Figure Q2(c) is connected in parallel to each other. Assume the frequency is 50 Hz. Determine:
 - (i) the total equivalent impedance of the circuit, Z_{eq} in polar form. (2 marks)
 - (ii) the steady-state current of the circuit, $i_1(t)$. (2 marks)
 - (iii) the phasor current across each element (3 marks)
 - (iv) Construct a phasor diagram showing all the current and the voltages in the circuit. (2 marks)

Q3 (a) Define the following terms:

- (i) Average power
- (ii) Apparent power
- (iii) Complex power
- (iv) Reactive power
- (v) Power factor

(5 marks)

(b) Consider the circuit shown in Figure Q3(b). Determine *I* by using:

- (i) Nodal analysis (6 marks)
- (ii) Mesh analysis (8 marks)
- (c) In the circuit of Figure Q3(c), if $V_{ab} = 440 \angle 10^{\circ} V$, $V_{bc} = 440 \angle 250^{\circ} V$, $V_{ca} = 440 \angle 130^{\circ} V$, find:
 - (i) The line currents, I_a , I_b and I_c .
 - (ii) The phase voltage at the load side.

Q4 (a) The model of a real transformer is constructed by considering all the losses that occurs in a transformer.

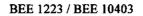
(i) Explain briefly the losses that occur in a transformer.

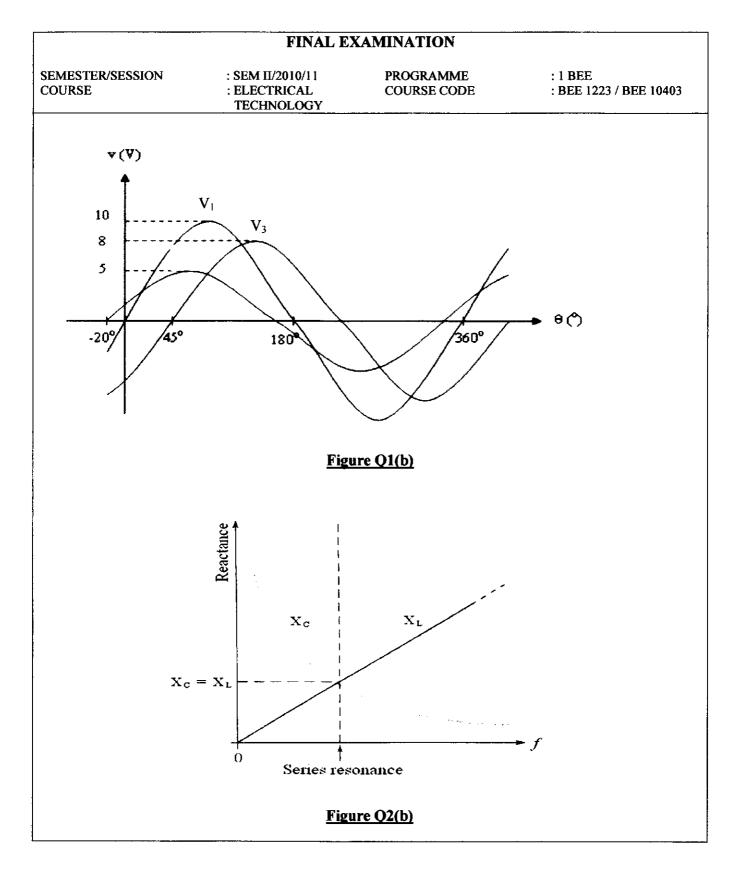
(4 marks)

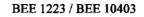
(6 marks)

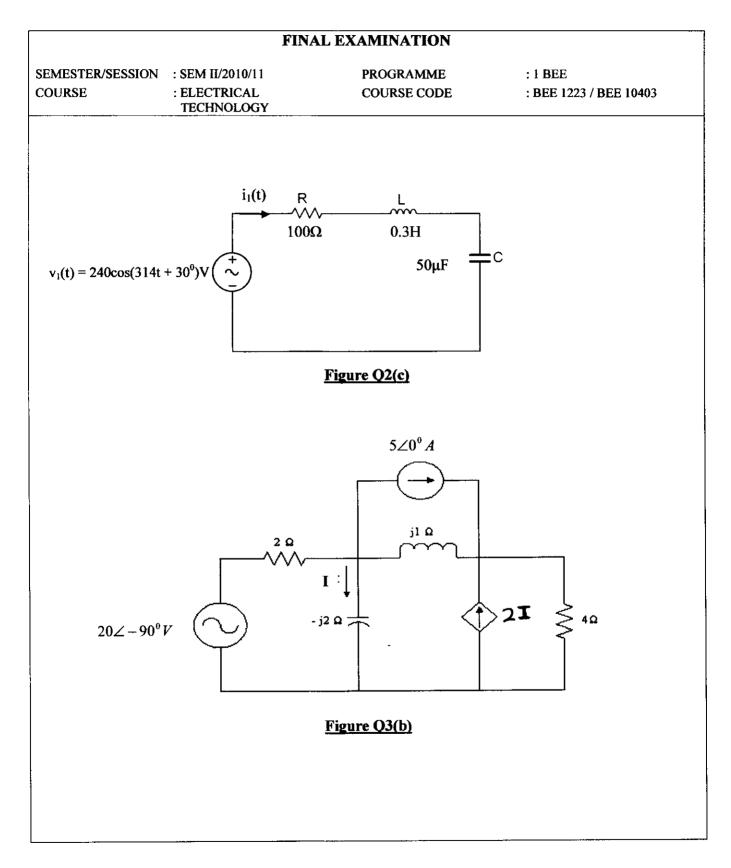
(ii) Draw and label the equivalent circuit of a real transformer.

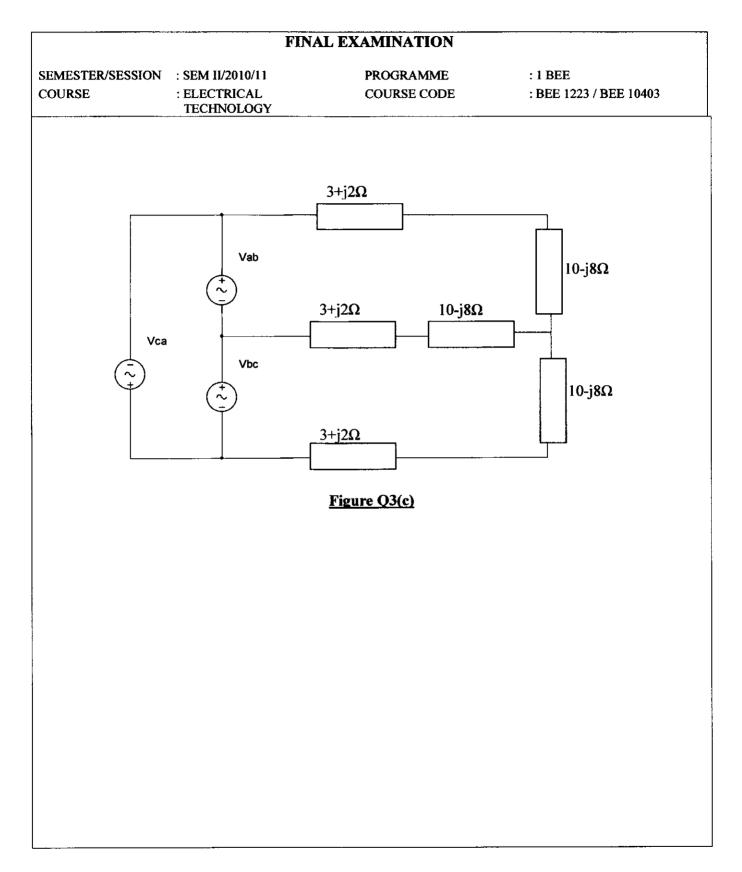
(2 marks)


(b) A 15 kVA 2200/110 V transformer has the following parameters:


Rp	= 1.75 Ω	Xp	= 2.6 Ω	Rc	= 10000 Ω
R _s	= 0.0045 Ω	Xs	= 0.0075 Ω	\mathbf{X}_{m}	= 1550 Ω


By using equivalent circuit referred to the primary, calculate:


- (i) the primary voltage of the transformer at rated load with 0.8 lagging power factor.
- (ii) the efficiency and voltage regulation of the transformer. (9 marks)
- (c) A 220 V shunt DC motor has an armature resistance of 0.15 Ω and a field resistance of 70 Ω . The motor draw a 7 A of line current while running light (no load) at 1150 rpm. The line current at full load is 46 A.
 - (i) Determine the motor speed at full load condition.
 - (ii) At full load condition, if the field circuit resistance is increase to 100Ω , calculate the new speed of this DC shunt motor. Assume that the line current remain the same.


(10 marks)

FINAL EXAMINATION						
SEMESTER/SESSION	: SEM II/2010/11	PROGRAMME	: 1 BE E			
COURSE : ELECTRICAL COURSE CODE TECHNOLOGY			: BEE 1223 / BEE 10403			
		Formulae				
Trigonometric iden	tities					
$\sin(\omega t \pm 180^\circ)$	$= -\sin \omega t$					
$\cos(\omega t \pm 180^{\circ})$	$= -\cos \omega t$					

 $\frac{\sin(\omega t \pm 90^{\circ})}{\cos(\omega t \pm 90^{\circ})} = \pm \frac{1}{2} \cos(\omega t \pm 90^{\circ})$

The delta to wye (Δ -Y) and wye to delta (Y- Δ) conversion formulas

Delta to wye conversion (Δ - Y)	Wye to delta conversion (Υ - Δ)	Superposition of Y and Δ network
$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$ $R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}}$ $R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$	$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$ $R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$ $R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$	R_{c}

Transformer voltage regulation

$$VR = \frac{V_{s,nl} - V_{s,fl}}{V_{s,fl}} \times 100\%$$

Transformer Efficiency

$$\eta = \frac{P_{out}}{P_{out} + P_{loss}} \times 100\%$$

Terminal voltage equation for DC shunt motor

$$V_t = E_a + I_a R_a$$