

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2010/2011

COURSE	: ELECTROMAGNETIC FIELDS AND
	WAVES

- COURSE CODE : BEE 2263/BEX 20903
- PROGRAMME : BEE/BEX
- EXAMINATION DATE : APRIL / MAY 2011
- DURATION : 3 HOURS
- INSTRUCTION : ANSWER FIVE (5) QUESTIONS ONLY

THIS PAPER CONSISTS OF FOURTEEN (14) PAGES

CONFIDENTIAL

Q1 (a) Electrostatic concept is used in many areas of application. Describe ONE of the applications of electrostatic in computer related industry.

(4 marks)

- (b) A uniform line charge of density, $\rho_i = 20 \text{ nC/m}$ exists at x = 2m, y = -4m. If two uniform sheets of charge with charge density $\rho_s = 10 \text{ nC/m}^2$ and $\rho_s = 30 \text{ nC/m}^2$ lie in the planes z = -1 m and y = 2 m respectively, calculate the electric field intensity, \vec{E} at point (-2, -1, 4) due to the three charges distribution. (12 marks)
- (c) A spherical shell centered at the origin extends between R = 2 cm and R = 3 cm. If the volume charge density is given by $\rho_v = 3R \times 10^{-4} C/m^3$, Determine the total charge contained in the spherical shell.

(4 marks)

Q2 (a) An important application of the fact that the electric field intensity in a perfect conductor cannot exist, E = 0 is in electrostatic screening. Explain the principle of an electrostatic screening using Gauss's law.

(5 marks)

(b) A spherical charge distribution is given by

$$\rho_{\nu} = \begin{cases} \frac{15}{r^2} \text{ mC/m}^3, \ 0 < r < 4\\ 0, \ otherwise \end{cases}$$

(i) Calculate the net flux crossing surface r = 3 m and r = 7 m.

(6 marks)

(ii) Determine \vec{D} at r = 2m and r = 5m.

(6 marks)

(d) Consider a thin spherical shell of radius, *a* carries a uniform surface charge density, ρ_s . Use Gauss's law to determine the electric field intensity, \vec{E} at everywhere.

(3 marks)

- The Biot Savart's law enables us to write the general results for the magnetic field Q3 (a) due to an arbitrary current distribution. It is an experimental law predicted by Biot and Savart dealing with magnetic field strength at a point due to a small current element. Like Coulomb's law, Biot-Savart's law is the general law of magnetostatic field.
 - Define the Biot-Savart's law. (i)

(3 marks)

Discuss the similarities and differences between electric field and (ii) magnetic field.

(3 marks)

Consider a circular loop of radius a lying on x-y plane with a current I in the (b) positive $\hat{\phi}$ direction as shown in Figure Q3(b). Show that the magnetic field intensity, \vec{H} at point P (0, 0, h) is given by

$$\vec{H} = \frac{Ia^2}{2(a^2 + h^2)^{3/2}} \hat{z} \quad (A/m)$$

Two parallel circular loops carrying a current of 40 A each are arranged as shown (c) in Figure Q3(c). The first loop is situated in the x-y plane with its center at the origin, and the second loop's center is at z = 2. If the two loops have the same radius a = 3, determine the magnetic field intensity, \vec{H} at point P (0, 0, 1).

(7 marks)

(7 marks)

- Q4 (a) Ampere's law is an alternative formulation to obtain magnetic field intensity, \vec{H} and magnetic flux density, \vec{B} by the relation with current.
 - (i) Define Ampere's circuital law.

(3 marks)

(ii) By using Ampere's circuital law, calculate the magnetic field intensity, \vec{H} at point P (4, 0, 0) caused by an infinitely long filamentary current, I along the y-axis as shown in Figure Q4 (a).

(2 marks)

(b) Consider an infinite long wire conductor carries current 6 mA in positive \hat{y} direction is enclosed symmetrically by a cylindrical shell as shown in Figure Q4 (b). The cylindrical shell has inner radius, a = 3 cm and outer radius, b = 6 cm and carries return current 4 mA in negative \hat{y} direction.

(i) Sketch the Amperian path at
$$r < a, a \le r \le b$$
 and $r > b$.
(2 marks)

- (ii) Calculate magnetic field intensity \vec{H} at r < a, $a \le r \le b$ and r > b. (10 marks)
- (iii) Plot the magnitude of the magnetic field intensity, \vec{H} against distance R from the center of the cylinder. Interpret the results.

(3 marks)

Q5 (a) State Maxwell's equations both in differential and integral form related to static electric and magnetic fields.

(4 marks)

- (b) A rectangular loop as shown in Figure Q5(b) lies in the x-y plane at z = 0. Find the total force exerted on the rectangular loop located in free space:
 - (i) If the magnetic flux density, \vec{B} is given by $\vec{B} = x \hat{x} + 2y \hat{y} + 3z \hat{z}$ T.

(6 marks)

(ii) If the magnetic flux density, \overline{B} is due to an infinitely long filamentary wire carrying current of 5 mA as shown in Figure Q5 (b) (ii).

(10 marks)

Q6 (a) Faraday's law states that the induced electromotive force (emf), V_{emf} in any closed circuit is equal to the time rate of change of the magnetic flux linkage by the circuit. With an aid of diagram, propose an experiment to prove the Faraday's Law.

(5 marks)

(b) A sliding bar as shown in Figure Q6 (b) is located at $x = 10t + 4t^3$, and the separation between two rails is 40 cm. If the magnetic flux density, $\vec{B} = 0.8x^2\hat{z}$ Tesla, find the voltmeter reading at t = 0.8s.

(8 marks)

(c) Consider a conductor joining the two ends of a resistor as shown in Figure Q6 (c). The time varying magnetic field is given by $\vec{B} = 0.4 \cos(120\pi t)$ Tesla. Assume that the magnetic field produced by I(t) is negligible. Calculate the induced electromotive force, $V_{ab}(t)$ in the circuit.

(7 marks)

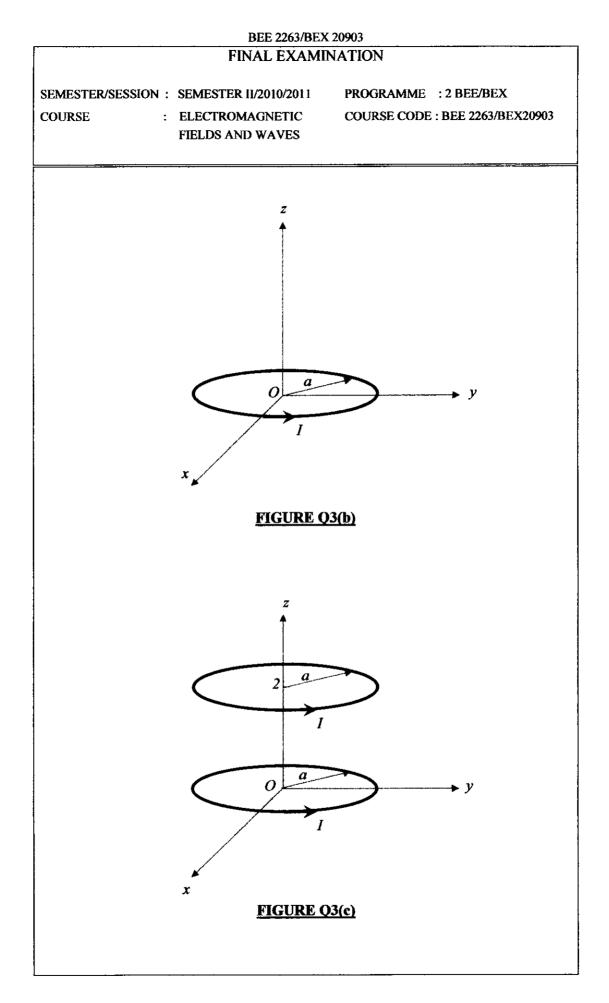
- **Q7** (a) The propagation of a plane wave has differences characteristic depend the medium used. Elaborate the plane wave propagation characteristic for:
 - (i) Free space,
 - (ii) Lossless dielectric,
 - (iii) Good conductor.

(9 marks)

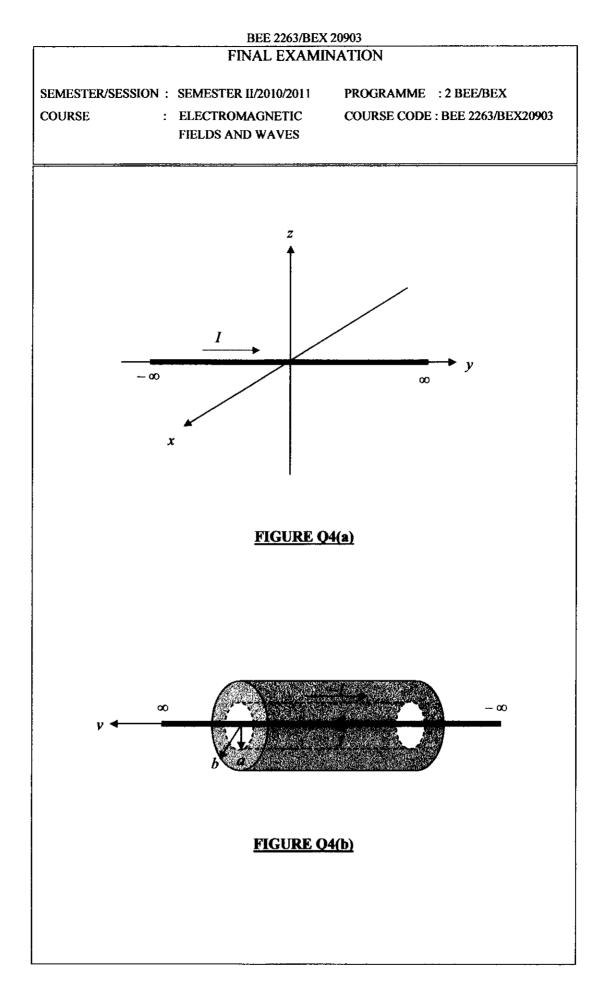
(b) The electric field in free space is given by

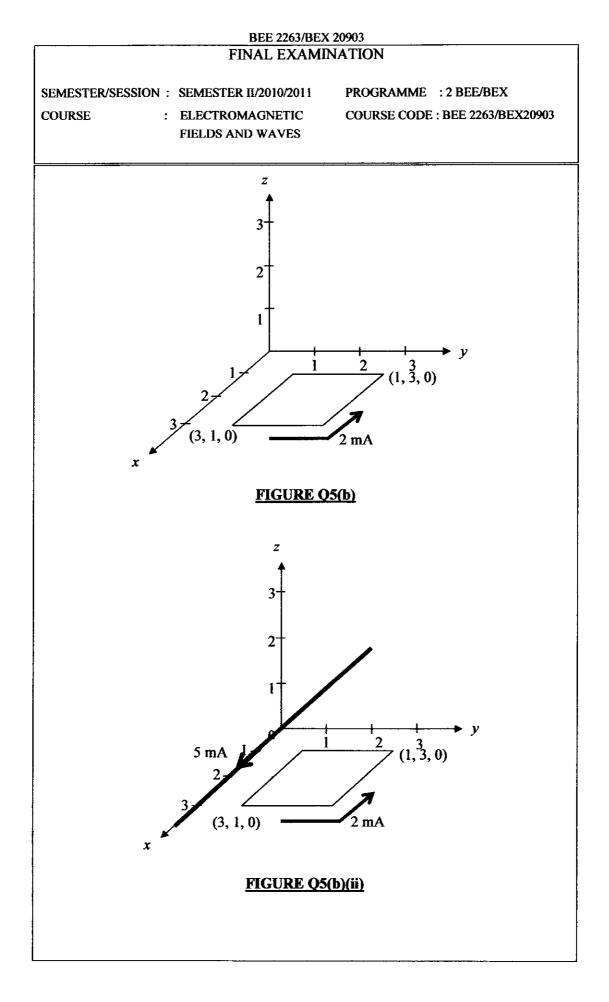
$$\vec{E}=50\cos(10^8t+\beta x)\hat{z}$$
 V/m

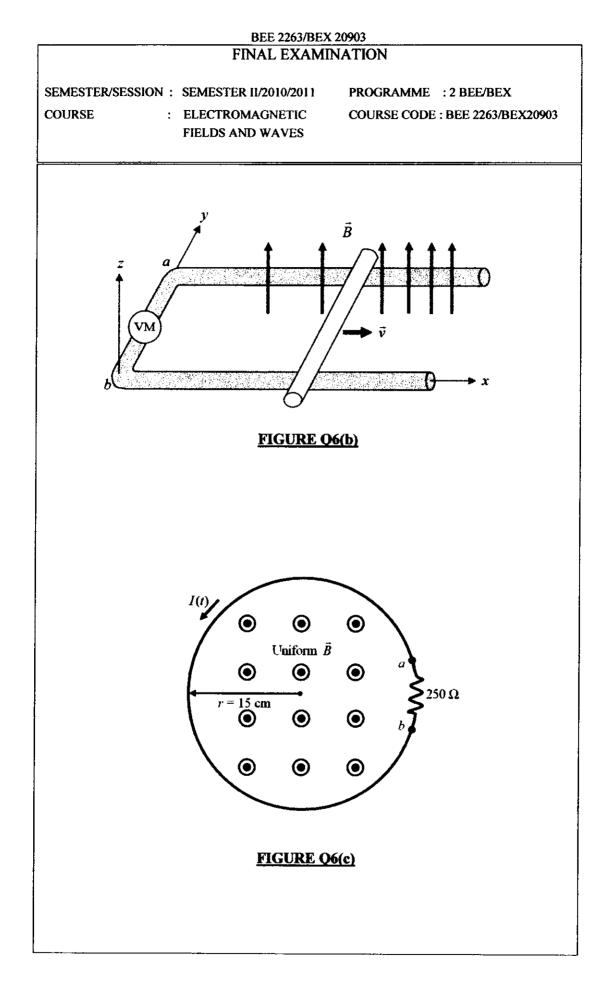
(i) Find the direction of wave propagation.


(1 mark)

(ii) Calculate the phase constant, β and the time it takes to travel a distance of $\lambda/2$.


(4 marks)


(iii) Sketch the wave at t = 0, t = T/4 and t = T/2.


(6 marks)

•

	BEE 2263	/BEX 20903	
	FINAL EXA	MINATION	
SEMESTER/SESSION : SEMI	ESTER II/2010/2011	PROGRAMME	: 2 BEE/BEX
	TROMAGNETIC FIELDS WAVES	COURSE CODE	: BEE 2263/BEX 20903
	For	nula	
Gradient			
$\nabla f = \frac{\partial f}{\partial x}\hat{\mathbf{x}} + \frac{\partial f}{\partial y}\hat{\mathbf{y}} + \frac{\partial f}{\partial z}\hat{\mathbf{x}}$	è		
$\nabla f = \frac{\partial f}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial f}{\partial \phi}\hat{\mathbf{\phi}} + \frac{\partial f}{\partial \phi}\hat{\mathbf{\phi}}$			
$\nabla f = \frac{\partial f}{\partial R}\hat{\mathbf{R}} + \frac{1}{R}\frac{\partial f}{\partial \theta}\hat{\mathbf{\theta}} + \frac$	$\frac{1}{R\sin\theta}\frac{\partial f}{\partial \phi}\hat{\mathbf{\varphi}}$		
Divergence			·····
$\nabla \bullet \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac$	4 <u>.</u> z		
$\nabla \bullet \vec{A} = \frac{1}{r} \left[\frac{\partial (rA_r)}{\partial r} \right] + \frac{1}{r}$	~~ ~~		
$\nabla \bullet \vec{A} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{\partial (R^2 A_R)}{\partial R} +$	$\frac{1}{R\sin\theta} \left[\frac{\partial (A_{\theta}\sin\theta)}{\partial\theta} \right] + \frac{1}{R}$	$\frac{1}{\sin\theta} \frac{\partial A_{\phi}}{\partial\phi}$	
Cari			
	$+\left(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}\right)\hat{\mathbf{y}}+\left(\frac{\partial A_y}{\partial x}-\frac{\partial A_y}{\partial x}\right)\hat{\mathbf{y}}$		
	$\hat{\mathbf{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{\mathbf{\phi}} + \frac{1}{r}\left(\frac{\partial (A_r)}{\partial z}\right)\hat{\mathbf{\phi}}$		
$\nabla \times \vec{A} = \frac{1}{R \sin \theta} \left[\frac{\partial (\sin \theta)}{\partial \theta} \right]$	$\left[\frac{A_{\phi}}{\partial \phi}\right] - \frac{\partial A_{\theta}}{\partial \phi} \left] \hat{\mathbf{R}} + \frac{1}{R} \left[\frac{1}{\sin \theta}\right]$	$\frac{\partial A_R}{\partial \phi} - \frac{\partial (RA_{\phi})}{\partial R} \Big] \hat{\Theta} + \frac{1}{R} \Big[$	$\left[\frac{\partial (RA_{\theta})}{\partial R} - \frac{\partial A_{R}}{\partial \theta}\right] \hat{\mathbf{\phi}}$
Laplacian			
$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2}{\partial z}$	$\frac{f}{f^2}$		
$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2}$	$\frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$		
$\nabla^2 f = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial f}{\partial R} \right)$	$+\frac{1}{R^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right)$	$+\frac{1}{R^2\sin^2\theta}\left(\frac{\partial^2 f}{\partial\phi^2}\right)$	
		· · · · · · · · · · · · · · · · · · ·	

BEE 2263/BEX 20903

	FINAL EXAN	AINATION	
SEMESTER/SESSION	: SEMESTER II/2010/2011	PROGRAMME	: 2 BEE/BEX
COURSE	: ELECTROMAGNETIC FIELDS	COURSE CODE	: BEE 2263/BEX 20903
	AND WAVES		

.

	Cartesian	Cylindrical	Spherical
Coordinate parameters	x, y, z	r, ¢, z	<i>R</i> , θ, φ
Vector \vec{A}	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_{,}\hat{\mathbf{r}} + A_{,}\hat{\mathbf{\phi}} + A_{z}\hat{\mathbf{z}}$	$A_R \hat{\mathbf{R}} + A_{\theta} \hat{\mathbf{\theta}} + A_{\phi} \hat{\mathbf{\phi}}$
Magnitude \vec{A}	$\sqrt{A_x^2 + A_y^2 + A_z^2}$	$\sqrt{A_r^2 + A_{\phi}^2 + A_z^2}$	$\sqrt{A_R^2 + A_\theta^2 + A_\phi^2}$
Position	$x_1\hat{\mathbf{x}} + y_1\hat{\mathbf{y}} + z_1\hat{\mathbf{z}}$	$r_{1}\hat{\mathbf{r}} + z_{1}\hat{\mathbf{z}}$	$R_1\hat{\mathbf{R}}$
vector, \overrightarrow{OP}	for point $P(x_1, y_1, z_1)$	for point $P(r_1, \phi_1, z_1)$	for point $P(R_1, \theta_1, \phi_1)$
Unit vector product	$\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}} \bullet \hat{\mathbf{r}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$	$\hat{\mathbf{R}} \bullet \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \bullet \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{\phi}} = 1$
	$\hat{\mathbf{x}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \bullet \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{R}} = 0$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} \times \hat{\mathbf{\Theta}} = \hat{\mathbf{\varphi}}$
	$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{R}}$
	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{p}}$	$\hat{\boldsymbol{\varphi}} \times \hat{\boldsymbol{R}} = \hat{\boldsymbol{\theta}}$
Dot product $\vec{A} \bullet \vec{B}$	$A_x B_x + A_y B_y + A_z B_z$	$A_{r}B_{r} + A_{\phi}B_{\phi} + A_{z}B_{z}$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product $\vec{A} \times \vec{B}$	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$ \begin{array}{cccc} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{array} $	$ \begin{array}{cccc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{array} $
Differential length, $\overline{d\ell}$	$d\mathbf{x}\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$	$dr\hat{\mathbf{r}}+rd\phi\hat{\mathbf{\phi}}+dz\hat{\mathbf{z}}$	$dR\hat{\mathbf{R}} + Rd\theta\hat{\mathbf{\theta}} + R\sin\thetad\phi\hat{\mathbf{\phi}}$
	$\overrightarrow{ds}_x = dy dz \hat{\mathbf{x}}$	$\vec{ds}_r = rd\phi dz \hat{\mathbf{r}}$	$\vec{ds}_R = R^2 \sin\theta d\theta d\phi \hat{\mathbf{R}}$
Differential	$\overrightarrow{ds}_y = dx dz \hat{\mathbf{y}}$	$\overrightarrow{ds}_{\bullet} = dr dz \hat{\Phi}$	$\vec{ds}_{\theta} = R\sin\theta dR d\phi \hat{\theta}$
surface, ds	$\vec{ds}_z = dx dy \hat{z}$	$\vec{ds}_z = rdr d\phi \hat{z}$	$\vec{ds}_{\phi} = R dR d\theta \hat{\phi}$
Differential volume, \overline{dv}	dx dy dz	r dr dø dz	R² sin θ dR dθ dφ