CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME	:	ELECTRONIC CIRCUITS ANALYSIS AND DESIGN
COURSE CODE	:	BEL 30403
PROGRAMME	:	BED / BEU
EXAMINATION DATE	:	JUNE 2013
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

Q1 (a) State the advantages of operational amplifier with feedback network.

(4 marks)

(b) Based on input signal V_i in Figure Q1 (b)(i), analyze and sketch the waveforms of V_{01} , V_{02} and V_{03} , in Figure Q1 (b)(ii). Assuming the initial voltage across the capacitor is zero.

(16 marks)

FIGURE Q1 (b)(i)

FIGURE Q1 (b)(ii)

- Explain the pass-band, transition-band and stop-band in frequency response of filter **Q2** (a) with the aid of diagram. (4 marks) (b) Figure Q2 (b) shows a third-order high-pass filter circuit. For this circuit, (i) Calculate the cut-off frequency of this filter. (2 marks) (ii) Determine the roll-off rate and gain (in dB) of this filter. (6 marks) Sketch and label completely the frequency response of this filter. (iii) (3 marks) (iv)
 - (iv) Propose the alternative design of filter in Figure Q2 (b) using Sallen-Key high-pass filter. Justify the advantages of the design.

(5 marks)

FIGURE Q2 (b)

Q3 (a) Systems without feedback have a gain of 75 dB, low cut-off frequency of 20 kHz and high cut-off frequency of 75 kHz. A negative feedback network with feedback factor $\beta = 0.0025$ is connecting to the system to increase the bandwidth of frequency. Analyze and sketch the frequency response of the system with feedback network.

(8 marks)

(b) Figure Q3 (a) shows a voltage controlled oscillator (VCO) using 555 timers. Illustrate the output waveform, V_0 at pin 3 and the capacitor voltage, V_{C1} at pin 2, if the potentiometer R_5 is connected at point A. Show all calculation. Assume the diode, D_1 is ideal.

(12 marks)

FIGURE Q3 (a)

- Q4 (a) An oscillator circuit in Figure Q4 (a) will maintain its oscillation when $A\beta = 1$.
 - (i) Briefly explain how the circuit can be acts as an oscillator. State the name of the oscillator.

(4 marks)

(ii) Calculate R_2 if the oscillation frequency of the circuit, $f_0 = 13$ kHz.

(4 marks)

(iii) Derive the relationship between R_a and R_b so that this circuit will sustain its oscillation.

(2 marks)

(b) The output V_{o1} in Figure Q4 (a) is now connected to the input V_i in Figure Q4 (b). Analyze the output V_{o2} . Show all calculation. Assuming breakdown voltage of Z_1 and Z_2 are 4.7 V.

(10 marks)

- Q5 Figure Q5 shows the circuit diagram for a simple DC power supply.
 - (a) Analyze the output waveform if a load current, I_L is 0.2A and voltage across R_L , V_L is 12V. Assuming a ripple factor across the load is 15%. Show all calculation.

(9 marks)

(b) Calculate the number of primary winding, N_P and smoothing capacitance C if AC source is 110 V_{rms} operating at 50 Hz.

(6 marks)

(c) An additional RC filter is connected to the circuit in Figure Q5 to reduce the ripple voltage. Analyze the new ripple factor (%) if the value R and C are 50 Ω and 1000 μ F, respectively.

(5 marks)

- END OF QUESTION -