

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2014/2015

COURSE NAME

ELECTROMAGNETIC FIELDS AND

: WAVES

COURSE CODE

: BEB 20303

PROGRAMME

BACHELOR OF ELECTRONIC ENGINEERING WITH HONOURS

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS.

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

ANSWER ALL QUESTIONS

Q1 (a) The membrane that surrounds a certain type of living cell has a surface area of $5.0 \times 10^{-9} m^2$ and thickness of $1.0 \times 10^{-8} m$. Assume that the membrane behaves like a parallel plate capacitor and has a dielectric constant of 5.0, calculate the charge resides on the outer surface if the potential on the outer surface of the membrane is $+60.0 \ mV$.

(6 marks)

- (b) Consider two nested cylindrical conductors of height, h and radii, a and b respectively. A charge +Q is evenly distributed on the inner cylinder and -Q on the outer cylinder. You may ignore the edge effects. The region in between the cylinders is filled with dielectric material constant ε_r .
 - (i) Sketch a figure to represent the condition in Q1(b).

(3 marks)

(ii) State the law that can be used to find the total electric flux in the region between the spheres. Explain the law in a sentence.

(3 marks)

(iii) Using the definition of the law in Q1 (b)(ii), calculate the electric potential in the region between the cylinders, (a < r < b).

(5 marks)

(iv) Express the capacitance of the system in terms of a, b and h.

(6 marks)

(v) Numerically evaluate the capacitance of the system if h = 15 cm, a = 4.75 cm, b = 7.25 cm and $\varepsilon_r = 3.2$.

(2 marks)

- Q2 (a) Two infinite lines are carrying identical current in the same direction. Both of them are located at x = -1, y = 1 and x = 1, y = -1, respectively.
 - (i) Sketch the infinite lines and show the direction of current.

(3 marks)

(ii) By using the right hand rule, sketch and show that the magnetic field (H) at (0, 0, 0) is equal to zero.

(2 marks)

(iii) Prove that the magnetic field (H) at (0,0,0) is equal to 0 by using ampere's law.

(6 marks)

(iv) Determine the magnetic field at (3,-3, 0) if both currents are 3A.

(5 marks)

(v) Based on your answer in **Q2(a)(iv)**, elaborate the effect of distance to the magnetic field (H) that observed at (3, -3, 0).

(2 marks)

- (b) The magnetic field of an infinitely long coaxial transmission line is represented in **Figure Q2(b)**.
 - (i) Find the radius of the inner conductor, outer conductor, the thickness of the outer conductor, and the current flowing on the coaxial transmission line.

(5 marks)

(ii) If this infinite coaxial line is placed in between a parallel line at (0,0,0) as in **Q2(a)**, predict the additional magnetic field that can be observed at (3,-3,0).

(2 marks)

Q3 (a) State the Hypothesis from Michael Faraday.

(2 marks)

(b) Michael Faraday (in London) and Joseph Henry (in New York) discovered that a magnetic field can produce an electric current in a closed loop, but only if the magnetic flux linking the surface area of the loop changes with time. Therefore, construct the experiment performed by them.

(8 marks)

- (c) A conducting bar can slide freely over two conducting rails as shown in **Figure Q3(c)**. Calculate the induced voltage in the bar if;
 - (i) the bar is stationed at y = 8 cm and $\mathbf{B} = 4 \cos 10^6 t \ \hat{\mathbf{z}} \text{ mWb/m}^2$;
 - (ii) the bar slides at a velocity $u = 20 \hat{y}$ m/s and $\mathbf{B} = 4 \hat{z}$ mWb/m²; and
 - (iii) the bar slides at a velocity $\mathbf{u} = 20 \ \hat{\mathbf{y}} \text{ m/s}$ and $\mathbf{B} = 4 \cos (10^6 t y) \ \hat{\mathbf{z}} \text{ mWb/m}^2$

(15 marks)

Q4 (a) Determine the time-averaged Poynting vector of electromagnetic waves in a lossless and perfectly resonant cavity.

(2 marks)

(b) The magnetic field component of a plane wave in a lossless dielectric ($\mu_r = 1$) is

$$H = 30 \sin (2\pi \times 10^8 t - 5x) \hat{z} \text{ mA/m}$$

Determine;

- (i) relative permittivity, ε_r ;
- (ii) the wavelength and wave velocity;
- (iii) the wave impedance;
- (iv) the polarization of the wave; and
- (v) the corresponding electric field component.

(10 marks)

(c) A plane wave propagating through a medium with $\varepsilon_r = 8$, $\mu_r = 2$ has

$$E = 0.5 e^{-z/3} sin (10^8 t - \beta z) \hat{x} v/m$$

Solve

- (i) the phase constant/wave number, β ;
- (ii) the loss tangent, $\tan \theta$;
- (iii) the intrinsic impedance, η ;
- (iv) the wave velocity, u; and
- (v) the magnetic field, H.

(13 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2014/2015

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

COURSE CODE: BEB 20303

Figure Q2(b).

Figure Q3(c)

Formula

Gradient

$$\nabla f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} + \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\mathbf{\phi}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla f = \frac{\partial f}{\partial R} \hat{\mathbf{R}} + \frac{1}{R} \frac{\partial f}{\partial \theta} \hat{\mathbf{\theta}} + \frac{1}{R \sin \theta} \frac{\partial f}{\partial \phi} \hat{\mathbf{\phi}}$$

Divergence

$$\nabla \bullet \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \bullet \vec{A} = \frac{1}{r} \left[\frac{\partial (rA_r)}{\partial r} \right] + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \bullet \vec{A} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{1}{R \sin \theta} \left[\frac{\partial (A_\theta \sin \theta)}{\partial \theta} \right] + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Curl

$$\begin{split} \nabla \times \vec{A} &= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{\mathbf{z}} \\ \nabla \times \vec{A} &= \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right) \hat{\mathbf{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \hat{\mathbf{\phi}} + \frac{1}{r} \left(\frac{\partial (rA_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right) \hat{\mathbf{z}} \\ \nabla \times \vec{A} &= \frac{1}{R \sin \theta} \left[\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi}\right] \hat{\mathbf{R}} + \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial (RA_\phi)}{\partial R}\right] \hat{\mathbf{\theta}} + \frac{1}{R} \left[\frac{\partial (RA_\theta)}{\partial R} - \frac{\partial A_R}{\partial \theta}\right] \hat{\mathbf{\phi}} \end{split}$$

Laplacian

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} + \frac{\partial^{2} f}{\partial z^{2}}$$

$$\nabla^{2} f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} + \frac{\partial^{2} f}{\partial z^{2}}$$

$$\nabla^{2} f = \frac{1}{R^{2}} \frac{\partial}{\partial R} \left(R^{2} \frac{\partial f}{\partial R} \right) + \frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{R^{2} \sin^{2} \theta} \left(\frac{\partial^{2} f}{\partial \phi^{2}} \right)$$

	Cartesian	Cylindrical	Spherical
Coordinate parameters	x, y, z	r, φ, z	R, θ, ϕ
Vector \vec{A}	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_r \hat{\mathbf{r}} + A_{\phi} \hat{\mathbf{\phi}} + A_z \hat{\mathbf{z}}$	$A_R \hat{\mathbf{R}} + A_{ heta} \hat{\mathbf{\theta}} + A_{\phi} \hat{\mathbf{\phi}}$
Magnitude \vec{A}	$\sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$	$\sqrt{{A_r}^2 + {A_{\phi}}^2 + {A_z}^2}$	$\sqrt{{A_R}^2+{A_\theta}^2+{A_\phi}^2}$
Position vector, \overrightarrow{OP}	$x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + z_1 \hat{\mathbf{z}}$ for point $P(x_1, y_1, z_1)$	$r_1 \hat{\mathbf{r}} + z_1 \hat{\mathbf{z}}$ for point $P(r_1, \phi_1, z_1)$	$R_1\hat{\mathbf{R}}$ for point $P(R_1, \theta_1, \phi_1)$
Unit vector product	$\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{x}} = 0$ $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{r}} \bullet \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{r}} = 0$ $\hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\varphi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}}$	$\hat{\mathbf{R}} \bullet \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \bullet \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{\phi}} = 1$ $\hat{\mathbf{R}} \bullet \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{R}} = 0$ $\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}$ $\hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$
Dot product $\vec{A} \cdot \vec{B}$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product $\vec{A} \times \vec{B}$	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$egin{array}{ccccc} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \ A_r & A_{\phi} & A_z \ B_r & B_{\phi} & B_z \ \end{array}$	$egin{array}{c cccc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{ heta} & A_{\phi} \\ B_R & B_{ heta} & B_{\phi} \\ \end{array}$
Differential length, $\overrightarrow{d\ell}$	$dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$	$dr\hat{\mathbf{r}} + rd\phi\hat{\mathbf{\phi}} + dz\hat{\mathbf{z}}$	$dR\hat{\mathbf{R}} + Rd\theta\hat{\boldsymbol{\theta}} + R\sin\thetad\phi\hat{\boldsymbol{\phi}}$
Differential surface, \overrightarrow{ds}	$\overrightarrow{ds}_x = dy dz \hat{\mathbf{x}}$ $\overrightarrow{ds}_y = dx dz \hat{\mathbf{y}}$ $\overrightarrow{ds}_z = dx dy \hat{\mathbf{z}}$	$\overrightarrow{ds}_r = rd\phi dz \hat{\mathbf{r}}$ $\overrightarrow{ds}_\phi = dr dz \hat{\mathbf{\varphi}}$ $\overrightarrow{ds}_z = rdr d\phi \hat{\mathbf{z}}$	$\overrightarrow{ds}_{R} = R^{2} \sin \theta d\theta d\phi \hat{\mathbf{R}}$ $\overrightarrow{ds}_{\theta} = R \sin \theta dR d\phi \hat{\mathbf{\theta}}$ $\overrightarrow{ds}_{\phi} = R dR d\theta \hat{\mathbf{\phi}}$
Differential volume, \overrightarrow{dv}	dx dy dz	r dr dφ dz	$R^2 \sin \theta dR d\theta d\phi$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to	$r = \sqrt{x^2 + y^2}$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$	$A_r = A_x \cos \phi + A_y \sin \phi$
Cylindrical	$\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
	z = z	$\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_z = A_z$
Cylindrical to	$x = r \cos \phi$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\varphi}}\sin\phi$	$A_x = A_r \cos \phi - A_\phi \sin \phi$
Cartesian	$y = r \sin \phi$	$\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\varphi}}\cos\phi$	$A_{y} = A_{r} \sin \phi + A_{\phi} \cos \phi$
	z = z	$\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_z = A_z$
Cartesian to	$R = \sqrt{x^2 + y^2 + z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{x}}\sin\theta\cos\phi$	$A_R = A_x \sin \theta \cos \phi$
Spherical	$\theta = \tan^{-1}(\sqrt{x^2 + y^2} / z)$	$+\hat{\mathbf{y}}\sin\theta\sin\phi+\hat{\mathbf{z}}\cos\theta$	$+ A_y \sin \theta \sin \phi + A_z \cos \theta$
	$\phi = \tan^{-1}(y/x)$ $\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{\theta}} = \hat{\mathbf{x}}\cos\theta\cos\phi$	$A_{\theta} = A_{x} \cos \theta \cos \phi$
	$\varphi = \tan (y/x)$	$+\hat{\mathbf{y}}\cos\theta\sin\phi-\hat{\mathbf{z}}\sin\theta$	$+ A_y \cos\theta \sin\phi - A_z \sin\theta$
		$\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$
Spherical to	$x = R\sin\theta\cos\phi$	$\hat{\mathbf{x}} = \hat{\mathbf{R}}\sin\theta\cos\phi +$	$A_{x} = A_{R} \sin \theta \cos \phi$
Cartesian	$y = R\sin\theta\sin\phi$	$\hat{\boldsymbol{\theta}}\cos\theta\cos\phi-\hat{\boldsymbol{\phi}}\sin\phi$	$+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$
	$z = R\cos\theta$	$\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi +$	$A_{y} = A_{R} \sin \theta \sin \phi$
		$\hat{\boldsymbol{\theta}}\cos\theta\sin\phi+\hat{\boldsymbol{\varphi}}\cos\phi$	$+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$
		$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to	$R = \sqrt{r^2 + z^2}$	$\hat{\mathbf{R}} = \hat{\mathbf{r}}\sin\theta + \hat{\mathbf{z}}\cos\theta$	$A_R = A_r \sin \theta + A_z \cos \theta$
Spherical	$\theta = \tan^{-1}(r/z)$	$\hat{\boldsymbol{\theta}} = \hat{\mathbf{r}}\cos\theta - \hat{\mathbf{z}}\sin\theta$	$A_{\theta} = A_r \cos \theta - A_z \sin \theta$
	$\phi = \phi$	$\hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}}$	$A_\phi = A_\phi$
Spherical to	$r = R \sin \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$
Cylindrical	$oldsymbol{\phi} = oldsymbol{\phi}$	$\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_{\phi}=A_{\phi}$
	$z = R\cos\theta$	$\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\boldsymbol{\theta}}\sin\theta$	$A_z = A_R \cos \theta - A_\theta \sin \theta$

0 1 10	The state of the s
$Q = \int \rho_{\ell} d\ell,$	
$Q = \int \rho_s dS,$	The state of the s
$Q = \int \rho_{v} dv$	
$\overline{F}_{12} = \frac{Q_1 Q_2}{4\pi\varepsilon_0 R^2} \hat{a}_{R_{12}}$	
$\overline{E} = \frac{\overline{F}}{Q},$	
$\overline{E} = \frac{Q}{4\pi\varepsilon_0 R^2} \hat{a}_R$	
$\overline{E} = \int \frac{\rho_{\ell} d\ell}{4\pi\varepsilon_0 R^2} \hat{a}_R$	
$\overline{E} = \int \frac{\rho_s dS}{4\pi\varepsilon_0 R^2} \hat{a}_R$	
$\overline{E} = \int \frac{\rho_{v} dv}{4\pi\varepsilon_{0} R^{2}} \hat{a}_{R}$	
$\overline{D} = \varepsilon \overline{E}$	
$\psi_e = \int \overline{D} \bullet d\overline{S}$	
$Q_{enc} = \oint_{S} \overline{D} \bullet d\overline{S}$	
$\rho_{v} = \nabla \bullet \overline{D}$	
$V_{AB} = -\int_{A}^{B} \overline{E} \bullet d\overline{\ell} = \frac{W}{Q}$	
$V = \frac{Q}{4\pi\varepsilon r}$	
$V = \int \frac{\rho_{\ell} d\ell}{4\pi \varepsilon r}$	
$\oint \overline{E} \bullet d\overline{\ell} = 0$	
$\nabla \times \overline{E} = 0$	
$\overline{E} = -\nabla V$	
$\nabla^2 V = 0$	
$R = \frac{\ell}{\sigma S}$	
$\sigma S = \int \overline{J} \bullet dS$	
$I - \int J \cdot u ds$	

$$d\overline{H} = \frac{Id\overline{\ell} \times \overline{R}}{4\pi R^3}$$

$$Id\overline{\ell} = \overline{J}_s dS = \overline{J} dv$$

$$\oint \overline{H} \bullet d\overline{\ell} = I_{enc} = \int \overline{J}_s dS$$

$$\nabla \times \overline{H} = \overline{J}$$

$$\psi_m = \int_S \overline{B} \bullet d\overline{S}$$

$$\psi_m = \oint \overline{B} \bullet d\overline{S} = 0$$

$$\psi_m = \oint \overline{A} \bullet d\overline{\ell}$$

$$\nabla \bullet \overline{B} = 0$$

$$\overline{B} = \mu \overline{H}$$

$$\overline{B} = \nabla \times \overline{A}$$

$$\overline{A} = \int \frac{\mu_0 Id\overline{\ell}}{4\pi R}$$

$$\nabla^2 \overline{A} = -\mu_0 \overline{J}$$

$$\overline{F} = Q(\overline{E} + \overline{u} \times \overline{B}) = m \frac{d\overline{u}}{dt}$$

$$d\overline{F} = Id\overline{\ell} \times \overline{B}$$

$$\overline{T} = \overline{r} \times \overline{F} = \overline{m} \times \overline{B}$$

$$\overline{m} = IS\hat{a}_n$$

$$V_{emf} = -\frac{\partial \psi}{\partial t}$$

$$V_{emf} = -\int \frac{\partial \overline{B}}{\partial t} \bullet d\overline{S}$$

$$V_{emf} = \int (\overline{u} \times \overline{B}) \bullet d\overline{\ell}$$

$$I_d = \int J_d .d\overline{S}, J_d = \frac{\partial \overline{D}}{\partial t}$$

$$\gamma = \alpha + j\beta$$

$$\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon}\right]^2 - 1}$$

$$\beta = \omega \sqrt{\frac{\mu \varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon}\right]^2 + 1}$$

$$\overline{F}_{1} = \frac{\mu I_{1} I_{2}}{4\pi} \oint_{L1L2} \frac{d\overline{\ell}_{1} \times (d\overline{\ell}_{2} \times \hat{a}_{R_{21}})}{R_{21}^{2}}$$

$$|\eta| = \frac{\sqrt{\mu/\varepsilon}}{\left[1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^{2}\right]^{\frac{1}{4}}}$$

$$tan 2\theta_{\eta} = \frac{\sigma}{\omega\varepsilon}$$

$$tan \theta = \frac{\sigma}{\omega\varepsilon} = \frac{\overline{J}_{s}}{\overline{J}_{ds}}$$

$$\delta = \frac{1}{\alpha}$$

$$\varepsilon_{0} = 8.854 \times 10^{-12} \text{ Fm}^{-1}$$

$$\mu_{0} = 4\pi \times 10^{-7} \text{ Hm}^{-1}$$

$$\int \frac{dx}{(x^{2} + c^{2})^{3/2}} = \frac{x}{c^{2}(x^{2} + c^{2})^{1/2}}$$

$$\int \frac{xdx}{(x^{2} + c^{2})^{3/2}} = \frac{-1}{(x^{2} + c^{2})^{1/2}}$$

$$\int \frac{dx}{(x^{2} + c^{2})^{3/2}} = \ln(x + \sqrt{x^{2} \pm c^{2}})$$

$$\int \frac{dx}{(x^{2} + c^{2})} = \frac{1}{c} tan^{-1} \left(\frac{x}{c}\right)$$

$$\int \frac{xdx}{(x^{2} + c^{2})} = \frac{1}{2} ln(x^{2} + c^{2})$$

$$\int \frac{xdx}{(x^{2} + c^{2})^{1/2}} = \sqrt{x^{2} + c^{2}}$$