

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2014/2015**

COURSE NAME

: ENGINEERING MATHEMATICS II

COURSE CODE

: BEE11403/BWM10303

PROGRAMME

BACHELOR OF ELECTRICAL ENGINEERING WITH HONOURS

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

3

- Q1 Given the initial-value problem $(x^2 + 1)y'' 4xy' + 6y = 0$, y(0) = 1, y'(0) = 1.
 - (a) By assuming $y = \sum_{m=0}^{\infty} c_m x^m$, show that the differential equation $(x^2 + 1)y'' 4xy' + 6y = 0 \text{ can be expressed as}$

$$\sum_{m=2}^{\infty} m \ (m-1) c_m x^m + \sum_{m=2}^{\infty} m \ (m-1) c_m x^{m-2} - 4 \sum_{m=1}^{\infty} m \ c_m x^m + 6 \sum_{m=0}^{\infty} c_m x^m = 0 \ .$$

(4 marks)

(b) By equating to the same power of two, show that the series can be represent as

$$\sum_{m=2}^{\infty} m (m-1)c_m x^m + 2c_2 + 6c_3 x + \sum_{m=4}^{\infty} m (m-1)c_m x^{m-2}$$

$$-4c_1x - 4\sum_{m=2}^{\infty} m \ c_m x^m + 6c_0 + 6c_1x + 6\sum_{m=2}^{\infty} c_m x^m = 0$$

(1 mark)

(c) From (b), find c_2 in terms of c_0 and c_3 in terms of c_1 .

(4 marks)

(d) By shifting the indices, prove that reccurance relation is given by

$$c_{n+2} = -\frac{(s-3)(s-2)}{(S+2)(S+1)}c_s, \quad n=2, 3,...$$

Determine the value for c_4 and c_5 .

(5 marks)

(e) Then, produce the coefficient of series for c_n , until c_9 .

(2 marks)

- (f) Hence, deduce the general solution of the differential equation $y'' 2x^2y = 0$. (2 marks)
- (g) Given the initial condition y(0) = 1 and y'(0) = 1, evaluate the particular solution of the differential equation $(x^2 + 1)y'' 4xy' + 6y = 0$.

(2 mark)

Q2 (a) Given the following periodic function,

$$f(x) = x^3, \qquad -\pi < x < \pi$$

$$f(x) = f(x + 2\pi)$$

- (i) Sketch the periodic function above for the interval $[-3\pi, 3\pi]$. (3 marks)
- (ii) Explain whether the above periodic function is an odd function, even function or neither odd nor even function.

(2 marks)

(iii) Determine the Fourier series expansion to represent the above periodic function.

(7 marks)

(b) By Fourier transform **definition**, evaluate $\mathcal{F}\{-3\delta(3t+4)\}$.

(4 marks)

(c) Find Fourier transform for g(t) where

$$g(t) = \begin{cases} -1, & -a < t < 0 \\ 1, & 0 < t < a \\ 0, & otherwise \end{cases}$$

(4 marks)

Q3 (a) Given the first-order differential equation

$$(6x^2 - 10xy + 3y^2)dx + (-5x^2 + 6xy - 3y^2)dy = 0.$$

- (i) Show the first-order differential equation is exact equation. (4 marks)
- (ii) Find the particular solution for the exact equation with initial condition, y(1) = 1.

(6 marks)

- (b) Given the RLC circuit as shown in Figure Q3 (b) and $R = 6\Omega$, L = 1H, C = 0.125F and $E(t) = \frac{-1}{2}e^{-2t}V$.
 - (i) By applying Kirchhoff's Voltage Law, shows that the RLC circuit can be modeled as

$$\frac{d^2i}{dt^2} + 6\frac{di}{dt} + 8i = e^{-2t}.$$

(1 marks)

(ii) Hence, produce the expression for current, i(t) by using variation of parameters.

(9 marks)

Q4 The network circuit in Figure Q4 can be modelled by the following system of first-order differential equations.

$$\begin{pmatrix} \frac{di_1}{dt} \\ \frac{di_2}{dt} \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ -1.6 & 1.2 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} + \begin{pmatrix} 12 \\ 4.8 \end{pmatrix}$$

(a) Give the general solution of the homogeneous system.

(10 marks)

(b) Obtain the particular integral for the nonhomogenous system.

(4 marks)

(c) Formulate the general solution for nonhomogenous system.

(2 marks)

(d) Determine the current i_1 and i_2 if there is no currents flow through at initial time.

(4 marks)

Q5 (a) Transform the following periodic function using Laplace transform.

$$E(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & 1 \le t \le 2 \end{cases}$$
$$E(t) = E(t+2)$$

(5 marks)

(b) A simple electric circuit consists of a resistor R ohm an inductor L (henry) with a voltage source, E(t) (volt). By applying Kirchhoff's Voltage Law, the current i(t) (ampere) in the circuit satisfies the following equation,

$$L\frac{di}{dt} + Ri = E(t)$$

(i) If $R = 15\Omega$, L = 5H, E(t) is a periodic function in (a) and there is no current flows at initial time t, show that the Laplace transform of the first-order differential equation in Q5(b) is

$$I(s) = \frac{1}{15} \left(\frac{1}{s} - \frac{1}{s+3} \right) \left(\frac{1}{1+e^{-s}} \right).$$
 (8 marks)

- (ii) By taking the geometric series of $\frac{a}{1-r} = a + ar + ar^2 + ar^3 + ...$ and inverse Laplace transform, formulate the current i(t) in terms of unit step function. (5 marks)
- (iii) Express the current i(t) when time goes to infinity in terms of step function for $0 \le t \le 4$.

(2 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2014/2015 COURSE NAME

: ENGINEERING

PROGRAMME: BEV, BEJ

COURSE CODE: BEE11403/BWM10303

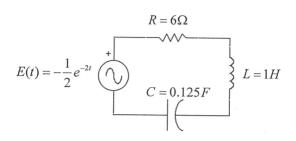


FIGURE Q3 (b)

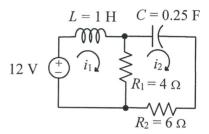


FIGURE Q4

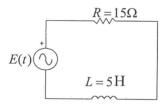


FIGURE Q5

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2014/2015

MATHEMATICS II

COURSE NAME : ENGINEERIN

PROGRAMME: BEV, BEJ

: ENGINEERING COURSE CODE: BEE11403/ BWM10303

FORMULAS

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

Chara	Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution			
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1x} + Be^{m_2x}$			
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$			
3.	Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$			

The method of undetermined coefficients for system of first order linear differential equations. For non-homogeneous for system of first order linear differential equations $\mathbf{Y}'(x) = A\mathbf{Y}(x) + \mathbf{G}(x)$, the particular solution $\mathbf{Y}_p(x)$ is given by:

$\mathbf{G}(x)$	$\mathbf{Y}_{p}(x)$	$\mathbf{G}(x)$	$\mathbf{Y}_{p}(x)$
u	a	$\mathbf{u}e^{\lambda x}$	$\mathbf{a}e^{\lambda x}$
$\mathbf{u}x + \mathbf{v}$	$\mathbf{a}x + \mathbf{b}$	$\mathbf{u}\cos\alpha x$ or $\mathbf{u}\sin\alpha x$	$a \sin \alpha x + b \cos \alpha x$

Laplace Transform

Laplace 1 ransform						
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$						
f(t)	F(s)	f(t)	F(s)			
а	$\frac{a}{s}$	$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$			
e ^{at}	$\frac{1}{s-a}$	H(t-a)	$\frac{e^{-as}}{s}$			
sin at	$\frac{a}{s^2 + a^2}$	f(t-a)H(t-a)	$e^{-as}F(s)$			
cosat	$\frac{s}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}			
sinh at	$\frac{a}{s^2 - a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$			
cosh at	$\frac{s}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$			
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	y(t)	Y(s)			
$e^{at}f(t)$	F(s-a)	y'(t)	sY(s) - y(0)			
$t^{n} f(t),$ $n = 1, 2, 3,$	$(-1)^n \frac{d^n}{ds^n} F(s)$	y''(t)	$s^2Y(s) - sy(0) - y'(0)$			

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2014/2015 **COURSE NAM**

: ENGINEERING

PROGRAMME: BEV, BEJ

COURSE CODE: BEE11403 /BWM10303

MATHEMATICS II

Electrical Formula

Voltage drop across resistor, *R* (Ohm's Law):

$$v_R = iR$$

Voltage drop across inductor, L (Faraday's Law):

$$v_L = L \frac{di}{dt}$$

Voltage drop across capacitor , C (Coulomb's Law): 3.

$$v_C = \frac{q}{C}$$
 or $i = C \frac{dv_C}{dt}$

The relation between current, i and charge, q:

$$i = \frac{dq}{dt}.$$

Fourier Series

Fourier series expansion	of	periodic	Half Range series
function with period $2L/2\pi$			$a_0 = \frac{2}{L} \int_0^L f(x) \ dx$
$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$			$\int_{0}^{\infty} a_{0} - \frac{1}{L} \int_{0}^{\infty} f(x) dx$
$u_0 = \frac{1}{L} \int_{-L} f(x) dx$			$2\int_{-\pi}^{L} f(x) \cos n\pi x dx$
$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$			$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$
$\int_{-L}^{L} \int_{-L}^{L} \int_{-L}^{L$			$\frac{2}{L}$ $\int_{-L}^{L} n\pi x$
$h = \frac{1}{2} \int_{-\infty}^{L} f(x) \sin n\pi x dx$			$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$
$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$			$1 \stackrel{\infty}{=} n\pi r \stackrel{\infty}{=} n\pi r$
$1 \stackrel{\infty}{\sim} n\pi x$	8	$n\pi x$	$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$
$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} +$	$+\sum b_{r}$	$\sin \frac{m}{I}$	$\sum_{n=1}^{\infty} n=1$
\angle $n-1$ L	n-1	L	

Table of Fourier Transform $\mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$

f(t)	$F(\omega)$	f(t)	$F(\omega)$	
$\delta(t)$	1	sgn(t)	2	
			iω	
$\delta(t-\omega_0)$	$e^{-i\omega_0\omega}$	H(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
1	$2\pi\delta(\omega)$	$e^{-\omega_0 t}H(t)$ for $\omega_0 > 0$	$\frac{1}{\omega_0 + i\omega}$	
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$t^n e^{-\omega_0 t} H(t)$ for	n!	
		$\omega_0 > 0$	$\overline{(\omega_0+i\omega)^{n+1}}$	
$\sin(\omega_0 t)$	$i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$e^{-at}\sin(\omega_0 t)H(t)$	$\frac{\omega_0}{\omega_0}$	
	,	for $a > 0$	$\frac{1}{(a+i\omega)^2+{\omega_0}^2}$	
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$	$e^{-at}\cos(\omega_0 t)H(t)$	$\frac{a+i\omega}{(a+i\omega)^2+{\omega_0}^2}$	
		for $a > 0$	$(a+i\omega)^2+\omega_0^2$	
$\sin(\omega_0 t)H(t)$	$\frac{\pi}{2}i[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$			
$\cos(\omega_0 t)H(t)$	$\frac{\pi}{2} \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right] + \frac{i\omega}{\omega_0^2 - \omega^2}$			