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Q1  Given the initial-value problem (x* +1)y"—4x)'+6y =0, »(0)=1, y'(0)=1.

(a) By assuming y=Zc x", show that the differential

m
m=0

(x* +1)y"—4xy"+6y =0 can be expressed as

i m (m—1)c,x" + i m (m—1)c, x"* - 4i mc,x" + Gi 0" =10,
m=2 m=2 m=1 m=0

equation

(4 marks)

(b) By equating to the same power of two, show that the series can be represent as

> m (m—1)c,x" + 202 +6c,x+ . m (m—1)c,x"

m=2 m=4

—4cx— 42 mc,x" +6c,+6c,x+ 62 c,x" =0
m=2

m=2

(c)  From (b), find ¢, in terms of ¢, and c, in terms of c,.

(d) By shifting the indices, prove that reccurance relation is given by

&5 s =23,
(S+2)( S+

Determine the value for ¢, and c;.

()  Then, produce the coefficient of series for ¢, , until c,.

€3] Hence, deduce the general solution of the differential equation y" —2x*y =
(2 marks)

(1 mark)

(4 marks)

(5 marks)

(2 marks)

0.

(2) Given the initial condition y(0) =1 and »'(0) =1, evaluate the particular solution of

the differential equation (x* +1)y"—4xy'+6y=0.

(2 mark)
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Q2 (3 Given the following periodic function,

f(x)=x, —T<X<T
f(x) = f(x+27)
(1) Sketch the periodic function above for the interval [-37[, 37[].

(3 marks)

(i)  Explain whether the above periodic function is an odd function, even function
or neither odd nor even function.

(2 marks)
(ili)  Determine the Fourier series expansion to represent the above periodic
function.
(7 marks)
(b) By Fourier transform definition, evaluate & {— 363t + 4)}.
(4 marks)
(©) Find Fourier transform for g(t) where
-1, —a<t<0
glt)=41 O<t<a
0, otherwise
(4 marks)
Q3 (a) Given the first-order differential equation
(6x* =10xy +3y” ) dx +(-5x° +6xy—3y* ) dy=0.
(i) Show the first-order differential equation is exact equation.
(4 marks)

(ii) Find the particular solution for the exact equation with initial
condition, y(1)=1.
(6 marks)
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(b) Given the RLC circuit as shown in Figure Q3 (b) and R=6Q , L=1H,

1

C =0.125F and E(7) =_7e_2’V.

(i) By applying Kirchhoff’s Voltage Law, shows that the RLC circuit can be

modeled as

2. .
a1 6% g
dt

(1 marks)

(i)  Hence, produce the expression for current, i(t) by using variation of

parameters.

(9 marks)

Q4 The network circuit in Figure Q4 can be modelled by the following system of first-order

differential equations.

di

dr | _ -4 4\ .
di, | \-1.6 12){,

dt

(a) Give the general solution of the homogeneous system.

(10 marks)

(b) Obtain the particular integral for the nonhomogenous system.

(4 marks)

(c) Formulate the general solution for nonhomogenous system.

(2 marks)

(d) Determine the current 7, and i, if there is no currents flow through at initial time.

(4 marks)
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Q5

(a) Transform the following periodic function using Laplace transform.

I, 0<r<l

E@®) =<
@ {o, 1<t<2

E@)=E(t+2)
(5 marks)

(b) A simple electric circuit consists of a resistor R ohm an inductor L (henry) with a
voltage source, E(¢) (volt). By applying Kirchhoff’s Voltage Law, the current
i(f) (ampere) in the circuit satisfies the following equation,

@

(ii)

(iii)

di
L—+Ri=E(
" 0]

If R=15Q, L=5H, E(¢) is a periodic function in (a) and there is no current
flows at initial time ¢, show that the Laplace transform of the first-order

differential equation in Q5(b) is

1(1 1 1
“”—ﬁ(;‘;rgj(ne—s]'

(8 marks)

. . . a .
By taking the geometric series of ——=a+ar+ ar’ +ar’ +... and inverse
—-r

Laplace transform, formulate the current i(f) in terms of unit step function.
(5 marks)
Express the current i(f) when time goes to infinity in terms of step function

for 0<r<4.
(2 marks)

- END OF QUESTION -
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1
E{t)=-—e™
® >

:

C=0.125F

4 |
AN

FIGURE Q3 (b)

L=1H C=025F
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MATHEMATICS II
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Second-order Differential Equation
The roots of characteristic equation and the general solution for differential equation
ay"+by'+cy=0.

Characteristic equation: am® +bm +c¢ =0.

Case | The roots of characteristic equation General solution
I. | Real and different roots: ~ m, and m, y=Ae™ + Be™
2. | Real and equal roots: m=m =m, y=(A+ Bx)e™
3. | Complex roots:m, =a + i, m, =a — fi y =e™(Acos Bx+ Bsin fx)

The method of undetermined coefficients for system of first order linear differential equations
For non-homogeneous for system of first order linear differential equations Y'(x) = 4 Y(x)+G(x),

the particular solution Y,(x) is given by:
G(x) Y, (x) G(x) Y, (%)

Ax

u a ue™ ae
ux+v ax+b ucosax orusinax | asinax+bcosax

Laplace Transform

L0} = [ f0ede = F(s)
/() F(s) 20 F(s)
‘ ¢ [/ 7y de 9
s g N
o : H(t-a) ¢’
S—a S
sin at — ft—a)H( - a) e F(s)
s +a
S
5 _ —as
cosat 7, (t-a) | e
sinh at 4 f0)3(t-a) e f(a)
§° ==
cosh ar s [, Faogte-uydu F(s)-G(s)
S —a
e, n!
n=12,3,.. il (1) Y(s)
h)
0, F(s-a) Y (@) s¥(s) = y(0)
AN A Y'(0) $Y(5) - $3(0) - ¥'(0)
n=123.. a5 T
7
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MATHEMATICS II

Electrical Formula

1. Voltage drop across resistor, R (Ohm’s Law): v, =iR
2. Voltage drop across inductor , L (Faraday’s Law): v, = g—
3. Voltage drop across capacitor , C (Coulomb’s Law): Vo = % or i=C C%C
4. The relation between current, i and charge, g: i= %
t

Fourier Series

Fourier series expansion of periodic | Half Range series
function with period 2L/ 2n 2 (L
- ay=" |y ()
ay=— j f(x) dx
L-L 2 (L nx
1 oL - a, :Z-fo f(x)cos—L— dx
an:—J. f(x)cos— dx
L 2L L 2 L . nm
b,=—1| f(x)sin— dx
1 (L . Nmx "o L
b, =~J f(x)sin— dx
L=l L 1 o nX ~~, . N7X
1 o e &2 - f(x)==qy +Zan cos——+2b,, smT
f(x) =5a0 + Zan cos-——+2bn sin—L— n=1 n=1
n=l n=1

Table of Fourier Transform F{f (1)} = [ f(t)e™ dt

Q) F(w) Q) F(w)
o(t) 1 sgn(t) l
iw
5a-a,) e HE) 75(@) +
iw
1 278 (w) e ™ 'H(t) for w,>0 1
wytiw
e’ 276(w — w,) t"e”™ H(t) for __n_
600 > 0 (COO +ia))"+1
sin(w,!) in|6(w+a,)—S(w—a)| | e sin(w,)H (1) -
for a > O (a+10)) + @y
cos(myt) 7;[5 (0+ ay)+6(w— a)o)] e cos(wyt)H (1) __atio
for a>0 (a+io)* +o,
sin(e,) H (1) Zi6@+0)-6@=-0)]+—"—
W, — @
cos(ay) H () —725[5 (@ + @,) + 6 (0 — w,)]+ Tzliua,z
0
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