

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME	: ELECTRIC CIRCUIT ANALYSIS II
COURSE CODE	: BEF 12503
PROGRAMME CODE	: BEV
EXAMINATION DATE	: JUNE / JULY 2016
DURATION	: 3 HOURS
INSTRUCTION	: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

BEF12503

CONFIDENTIAL

1

1

Q1 (a) Define the basic of capacitor and inductor elements in electrical circuit. Describe the definitions with a proper figure and equations.

(8 marks)

- (b) A 24V DC supply is connected to a passives element in the circuit as shown in **Figure Q1(b)**,
 - (i) determine the current i_T and i_L ,
 - (ii) determine the voltage across 10Ω resistor,

(iii) determine the energy stored in the capacitor and the inductor.,

(4 marks)

(4 marks)

(2 marks)

(iv) conclude the relationship of the energy stored in capacitor and the inductor based on the results obtained in Q1(b)(iii).

(2 marks)

Q2 (a) Figure Q2(a) shows a capacitor, $C = 0.5 \mu F$ is being charged through a 10k Ω resistor from a 100V DC source.

(i) Rewrite an expression of the current, i_C the capacitor voltage, V_C and the resistor voltage, V_R when switch S is changed from A to B.

(6 marks)

(ii) Calculate the current flowing and the current drop rate at $t=0^+$.

(4 marks)

(iii) Determine the capacitor voltage rise rate and the resistor voltage drop rate at $t=0^+$.

(4 marks)

(iv) Analyze the energy stored by the capacitor when it is fully charged.

(2 marks)

(v) Based on the results in Q2(a)(i), describe an expression of i_C , V_C and V_R when switch S is changed from B to C.

(4 marks)

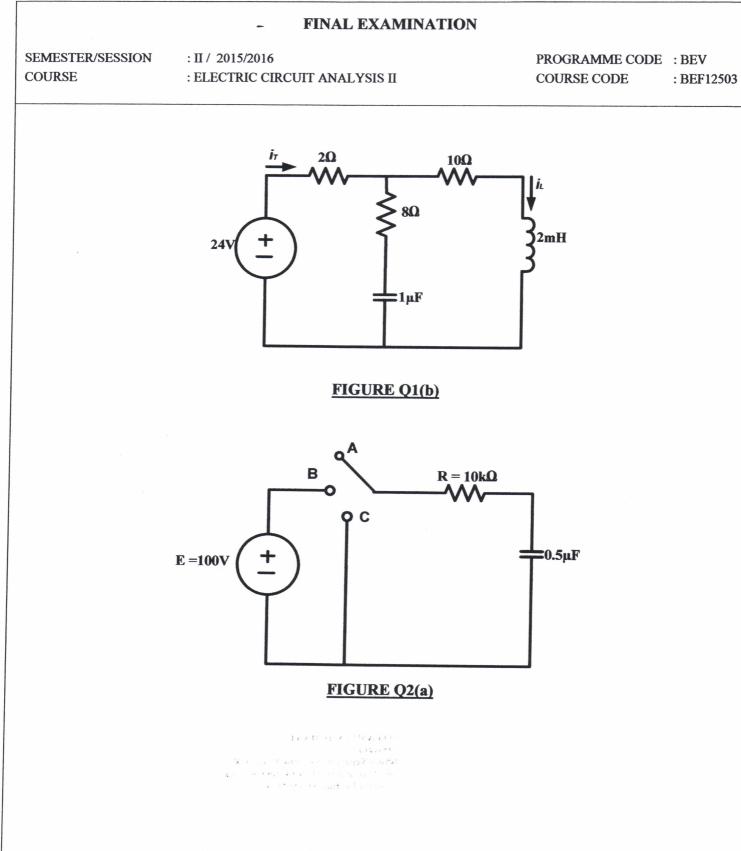
i ¹

BEF12503

Q3	(a)	A series circuit consists of 50 Ω resistor, an inductor of 0.5 H, and a capacitor 250 μ F are connected to a 240 V, 50 Hz single-phase supply.	
		(i) Sketch the phasor domain circuit. (4 marks	
		(ii) Calculate the impedance, Z of the circuit. (3 marks	
		(iii) Analyze the voltage source, Vs , voltage drop across resistor V_R , V_L and V_C of the circuit. (8 marks)	
		(iv) Construct the phase angle of the circuit. (3 marks	
		 (v) Conclude the relationship of phasor current and the voltage supply based on the result obtained in Q3(a)(iv). 	
		(2 marks	
Q4 (a) A single-phase sinusoidal AC voltage supply is defined as $v_s(t) = 10$ shown in Figure Q4(a) connected to the linear circuit.		A single-phase sinusoidal AC voltage supply is defined as $v_s(t) = 10 \sin(1000t)$ as shown in Figure Q4(a) connected to the linear circuit.	
		(i) Find the complex impedance of the inductor and the capacitor. (2 marks)	
		(ii) Draw the phasor domain circuit. (3 marks)	
	(iii) Use the Voltage Divider Rule, to determine the capacitor voltage, V_C (
		(iv) Use the Ohms Law, calculate the $i_R(t)$, $i_C(t)$ and $i(t)$. (3 marks)	
	(b)	A single-phase sinusoidal current supply is defined as $i_s(t) = 125 \sin(100t)$ shown in Figure Q4(b) is connected to passive elements.	
		(i) Determine the complex impedance of the inductor and the capacitor. (2 marks)	
		(ii) Construct the phasor domain circuit. (2 marks)	

3

з¹ - г¹


BEF12503

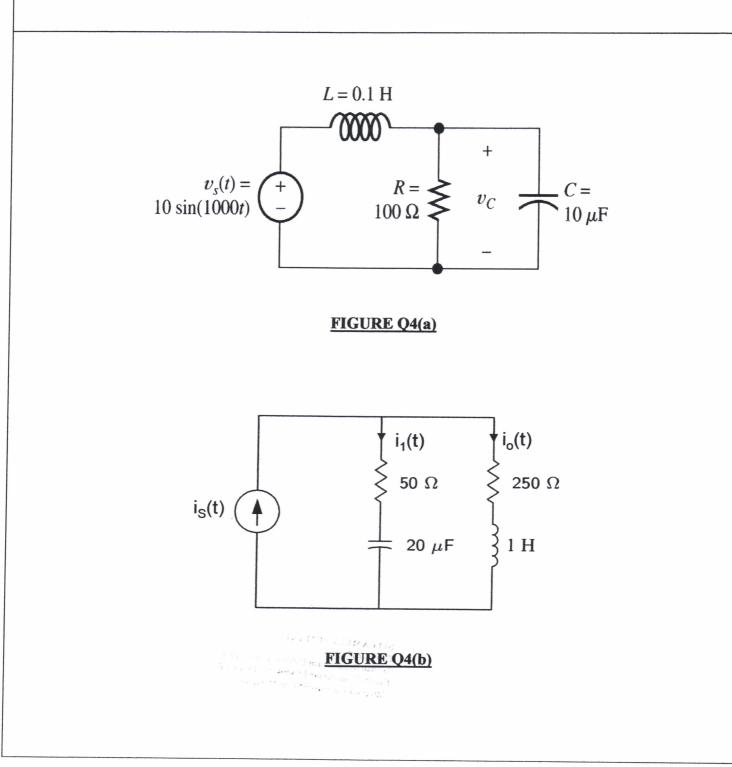
		(iii) Use the Current Divider Rule, find the output current $i_O(t)$.	(2 marks)	
		(iv) Calculate the $i_1(t)$ of the circuit.	(2 marks)	
		(v) Illustrate the phasor angle of the circuit.	(2 marks)	
Q5	(a)	The purely inductor circuit as shown in Figure Q5(a).		
		(i) Describe an expression of $i(t)$, $v(t)$ and $p(t)$ of the circuit	(3 marks)	
		(ii) Illustrate the power triangle for purely inductive load.	(2 marks)	
	(b)	The AC voltage supply is defined as $v_s(t) = 100 \cos(1000t) V$ as shown i Q5(b) is connected to R-L-C loads.	n Figure	
		(i) Calculate the load current, $I(\omega)$.		
			(2 marks)	
		(ii) Use the Ohms Law, find the voltage phasors, $V_R(\omega)$, $V_L(\omega)$ and $V_C(\omega)$		
			(3 marks)	
		(iii) Compute the complex power of each elements, the source S_V , the resist inductor S_L and the capacitor S_C .	v , the resistor S_R , the	
			(4 marks)	
		(iv) Determine the average power for the resistor, inductor, capacitor and	source, P _V . (4 marks)	
		 (v) Conclude the relationship of total power absorbed by all elements base results obtained in Q5(b)(iii). 	ed on the	
			(2 marks)	
		a Solar and a state of the stat		

- END OF QUESTIONS

, **k**

BEF12503

BEF12503


SEMESTER/SESSION : II / 2015/2016 COURSE : ELECTRIC CII

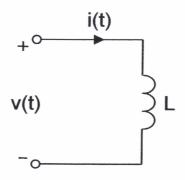
ŧ

, ¹ , ¹

: ELECTRIC CIRCUIT ANALYSIS II

PROGRAMME CODE : BEV COURSE CODE : BEF12503

BEF12503


SEMESTER/SESSION COURSE

"L

,3

: II / 2015/2016 : ELECTRIC CIRCUIT ANALYSIS II

PROGRAMME CODE : BEV COURSE CODE : BEF12503

FIGURE Q5(a)

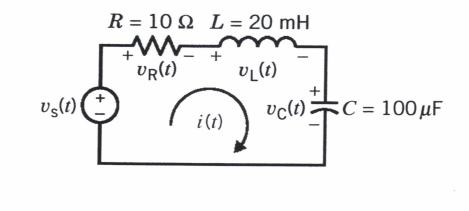


FIGURE Q5(b)