

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER II

## **SESSION 2015/2016**

COURSE NAME

ELECTROMAGNETIC FIELDS AND WAVES

COURSE CODE

BEB 20303

**PROGRAMME** 

• BEJ

**EXAMINATION DATE** 

• JUNE/JULY 2016

**DURATION** 

3 HOURS

**INSTRUCTION** 

ANSWER ALL QUESTIONS

THIS PAPER CONSISTS OF THIRTEEN (13) PAGES

#### ANSWER ALL QUESTIONS

Q1 (a) Consider -Q charge is evenly distributed on the inner cylinder and +Q on the outer cylinder of two nested cylindrical conductors as shown in **Figure Q1(a)** respectively. The region in between the cylinders is filled with dielectric material with relative permittivity of  $\varepsilon_r$ . Derive the capacitance (C) of this nested cylindrical conductor in terms of a, b and b where b is its height, a and b are the inner radius and outer radius of the cylinder respectively. State the assumption you made for the derivation.

(10 marks)

- (b) A dielectric spherical shell has volume charge density,  $\rho_v$  (C/m³) only at a < R < b. The  $\rho_v$  is 0 otherwise. a represent the inner radius while b represents the outer radius. On the other hand, a point charge,  $+Q_1$  is located at the center of the spherical shell as shown in **Figure Q1(b)**.
  - (i) Find the electric field intensity,  $\vec{E}$  at the region when R < a, a < R < b and R > b.

(10 marks)

(ii) Plot the magnitude of the electric field intensity,  $|\vec{E}|$  against distance, R from the center of the spherical shell. Discuss your results.

(5 marks)

- Q2 (a) Two infinite lines are carrying identical current in the same direction. These lines pass through the x-y plane at (-1, 1) and (1, -1) location.
  - (i) Sketch the infinite lines and show the direction of current.

(3 marks)

(ii) Find the point where the magnetic field,  $\vec{H}$  is equal to zero by using Ampere's law.

(6 marks)

(iii) Verify your answer in **Q2** (a)(ii) by using the right hand rule.

(2 marks)

(iv) Determine the magnetic field,  $\vec{H}$  at (3,-3, 0) if both currents are 3A.

(5 marks)

(v) Based on your answer in **Q2(a)(iv)**, determine the effect of distance on the magnetic field,  $\vec{H}$  at (3, -3, 0).

(2 marks)

(b) A current filament carries a uniform current, I and it produces a magnetic density  $\vec{B}$ . The direction of the magnetic flux density around the current filament can be determined by right hand rule as shown in **Figure Q2(a)**. Justify your arguments why the direction of the magnetic flux density does not exist as in **Figure Q2(b)** and **Figure Q2(c)**.

(7 marks)



Q3 (a) Faraday's law states that the induced electromotive force (emf),  $V_{emf}$  in any closed circuit is equal to the rate of change of the magnetic flux linkage by the circuit. Differentiate between transformer electromotive force and motion electromotive force.

(6 marks)

(b) **Figure Q3 (b)** shows a rectangular loop with a conducting slide bar located at  $x = 10t + 4t^3$ . The separation between the two rails is 40 cm. If the magnetic flux density,  $\vec{B} = 0.8x^2\hat{z} \ Wb/m^2$ , calculate the voltmeter reading at t = 1 s.

(9 marks)

- (c) The rectangular loop shown in **Figure Q3 (c)** is placed inside a uniform magnetic field  $\vec{B} = 50 \times 10^{-3} \, \hat{y} \, Wb \, / \, m^2$ . The magnetic field is oriented along the *y*-direction. If the side *G-H* of the loop cuts the flux lines at the frequency of 50 Hz and the loop lies in the *y-z* plane at time t = 0, Calculate
  - (i) The induced electromotive force (emf),  $V_{emf}$  at t = 1 ms.
  - (ii) The induced current,  $I_{ind}$  at t = 3 ms

(10 marks)

Q4 (a) List and explain the differential forms of Maxwell's equations for time varying electric and magnetic fields. Construct an experiment that can describe the significance of ONE(1) of the Maxwell's equations.

(6 marks)

- (b) The electric field phasor of a uniform plane wave in a lossless medium is given by  $\vec{E}(y) = 10e^{-j0.2y}\hat{z}$  (V/m). If the phase velocity of the wave is 1.5 x 10<sup>8</sup> m/s and the relative permeability of the medium is  $\mu_r = 2.4$ , Determine
  - (i) the wavenumber,

(2 marks)

(ii) the wavelength,

(2 marks)

(iii) the frequency,

(2 marks)

(iv) the polarization of the wave,

(2 marks)

(v) the relative permittivity of the medium,

(2 marks)

(vi) the magnetic field,  $\vec{H}$  (y, t),

(3 marks)

(vii) the average power density carried by the wave.

(3 marks)

(viii) Plot the  $\vec{E}(y,t)$  and  $\vec{H}(y,t)$  as a function of y at t=0.

(3 marks)

#### BEB 20303

#### FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

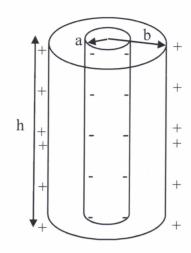


Figure Q1(a).

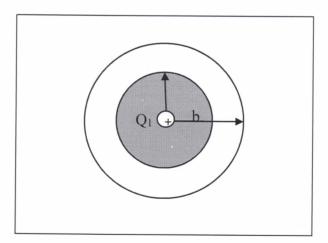


Figure Q1(b)

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

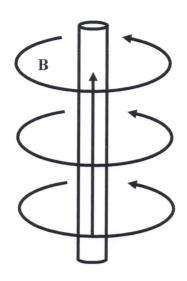


Figure Q2(a)

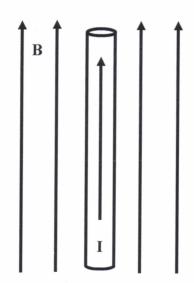


Figure Q2(b)

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

**ELECTRONIC ENGINEERING** 

COURSE: ELECTROMAGNETIC FIELDS & WAVES

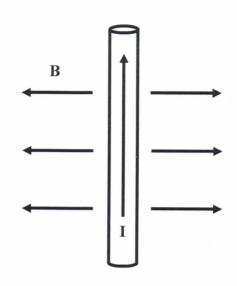


Figure Q2(c)

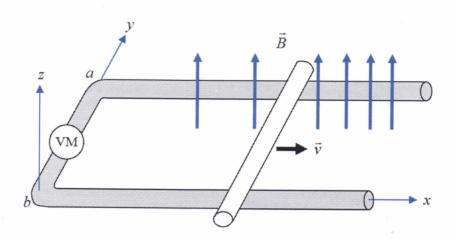


Figure Q3(b)

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

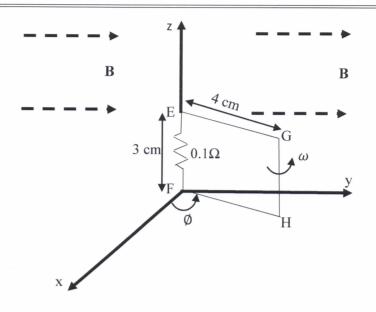


Figure Q3(c)

#### BEB 20303

#### FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

**ELECTRONIC ENGINEERING** 

COURSE: ELECTROMAGNETIC FIELDS & WAVES

**COURSE CODE: BEB 20303** 

#### **Formula**

#### Gradient

$$\nabla f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} + \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\mathbf{\phi}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla f = \frac{\partial f}{\partial R} \hat{\mathbf{R}} + \frac{1}{R} \frac{\partial f}{\partial \theta} \hat{\mathbf{\theta}} + \frac{1}{R \sin \theta} \frac{\partial f}{\partial \phi} \hat{\mathbf{\phi}}$$

#### Divergence

$$\nabla \bullet \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \bullet \vec{A} = \frac{1}{r} \left[ \frac{\partial (rA_r)}{\partial r} \right] + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \bullet \vec{A} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{1}{R \sin \theta} \left[ \frac{\partial (A_{\theta} \sin \theta)}{\partial \theta} \right] + \frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

#### Curl

$$\begin{split} \nabla\times\vec{A} &= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\hat{\mathbf{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{\mathbf{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\hat{\mathbf{z}} \\ \nabla\times\vec{A} &= \left(\frac{1}{r}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right)\hat{\mathbf{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{\mathbf{\phi}} + \frac{1}{r}\left(\frac{\partial \left(rA_{\phi}\right)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right)\hat{\mathbf{z}} \\ \nabla\times\vec{A} &= \frac{1}{R\sin\theta} \left[\frac{\partial \left(\sin\theta\ A_{\phi}\right)}{\partial\theta} - \frac{\partial A_{\theta}}{\partial\phi}\right]\hat{\mathbf{R}} + \frac{1}{R} \left[\frac{1}{\sin\theta}\frac{\partial A_R}{\partial\phi} - \frac{\partial \left(RA_{\phi}\right)}{\partial R}\right]\hat{\mathbf{\theta}} + \frac{1}{R} \left[\frac{\partial \left(RA_{\theta}\right)}{\partial R} - \frac{\partial A_R}{\partial\theta}\right]\hat{\mathbf{\phi}} \end{split}$$

#### Laplacian

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} + \frac{\partial^{2} f}{\partial z^{2}}$$

$$\nabla^{2} f = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} + \frac{\partial^{2} f}{\partial z^{2}}$$

$$\nabla^{2} f = \frac{1}{R^{2}} \frac{\partial}{\partial R} \left( R^{2} \frac{\partial f}{\partial R} \right) + \frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{R^{2} \sin^{2} \theta} \left( \frac{\partial^{2} f}{\partial \phi^{2}} \right)$$

### **CONFIDENTIAL**

#### BEB 20303

#### FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

|                                              | Cartesian                                                                                                                               | Cylindrical                                                                                                                                                 | Spherical                                                                                                                                                               |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coordinate parameters                        | x, y, z                                                                                                                                 | $r, \phi, z$                                                                                                                                                | $R,  \theta,  \phi$                                                                                                                                                     |
| Vector $\vec{A}$                             | $A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$                                                                    | $A_r \hat{\mathbf{r}} + A_\phi \hat{\mathbf{\phi}} + A_z \hat{\mathbf{z}}$                                                                                  | $A_R \hat{\mathbf{R}} + A_{\theta} \hat{\mathbf{\theta}} + A_{\phi} \hat{\mathbf{\phi}}$                                                                                |
| Magnitude $\vec{A}$                          | $\sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$                                                                                                    | $\sqrt{{A_r}^2 + {A_\phi}^2 + {A_z}^2}$                                                                                                                     | $\sqrt{{A_R}^2 + {A_\theta}^2 + {A_\phi}^2}$                                                                                                                            |
| Position vector,                             | $x_1\hat{\mathbf{x}} + y_1\hat{\mathbf{y}} + z_1\hat{\mathbf{z}}$ for                                                                   | $r_1\hat{\mathbf{r}} + z_1\hat{\mathbf{z}}$                                                                                                                 | $R_1\hat{\mathbf{R}}$                                                                                                                                                   |
| $\overrightarrow{OP}$                        | point $P(x_1, y_1, z_1)$                                                                                                                | for point $P(r_1, \phi_1, z_1)$                                                                                                                             | for point $P(R_1, \theta_1, \phi_1)$                                                                                                                                    |
|                                              | $\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ | $\hat{\mathbf{r}} \bullet \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ | $\hat{\mathbf{R}} \bullet \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \bullet \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \bullet \hat{\boldsymbol{\phi}} = 1$ |
|                                              | $\hat{\mathbf{x}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{x}} = 0$ | $\hat{\mathbf{r}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{r}} = 0$               | $\hat{\mathbf{R}} \bullet \hat{\mathbf{\theta}} = \hat{\mathbf{\theta}} \bullet \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \bullet \hat{\mathbf{R}} = 0$                 |
| Unit vector product                          | $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$                                                                           | $\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$                                                                                            | $\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}$                                                                                                   |
|                                              | $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$                                                                           | $\hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$                                                                                            | $\hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}$                                                                                                   |
|                                              | $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$                                                                           | $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}}$                                                                                     | $\hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$                                                                                                   |
| Dot product $\vec{A} \bullet \vec{B}$        | $A_x B_x + A_y B_y + A_z B_z$                                                                                                           | $A_r B_r + A_\phi B_\phi + A_z B_z$                                                                                                                         | $A_{R}B_{R} + A_{\theta}B_{\theta} + A_{\phi}B_{\phi}$                                                                                                                  |
| Cross product $\vec{A} \times \vec{B}$       | $egin{array}{ccccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \ A_x & A_y & A_z \ B_x & B_y & B_z \ \end{array}$           | $egin{array}{ccccc} \hat{f r} & \hat{m \phi} & \hat{f z} \ A_r & A_\phi & A_z \ B_r & B_\phi & B_z \ \end{array}$                                           | $egin{array}{ccccc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \ A_R & A_{	heta} & A_{\phi} \ B_R & B_{	heta} & B_{\phi} \ \end{array}$             |
| Differential ength, $\overrightarrow{d\ell}$ | $dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$                                                                          | $dr\hat{\mathbf{r}} + rd\phi\hat{\mathbf{\phi}} + dz\hat{\mathbf{z}}$                                                                                       | $dR\hat{\mathbf{R}} + Rd\theta\hat{\mathbf{\theta}} + R\sin\thetad\phi\hat{\mathbf{\phi}}$                                                                              |
| Differential                                 | $\overrightarrow{ds}_x = dy  dz  \hat{\mathbf{x}}$                                                                                      | $\overrightarrow{ds}_r = rd\phi  dz  \hat{\mathbf{r}}$                                                                                                      | $\overrightarrow{ds}_R = R^2 \sin\theta  d\theta  d\phi  \hat{\mathbf{R}}$                                                                                              |
| surface, $\overrightarrow{ds}$               | $\overrightarrow{ds}_y = dx  dz  \hat{\mathbf{y}}$                                                                                      | $\overrightarrow{ds}_{\phi} = dr  dz  \hat{\mathbf{\varphi}}$                                                                                               | $\overrightarrow{ds}_{\theta} = R \sin \theta  dR  d\phi  \hat{\mathbf{\theta}}$                                                                                        |
| Surrave, us                                  | $\overrightarrow{ds}_z = dx  dy  \hat{\mathbf{z}}$                                                                                      | $\overrightarrow{ds}_z = rdr \ d\phi \ \hat{\mathbf{z}}$                                                                                                    | $\overrightarrow{ds}_{\phi} = R  dR  d\theta  \hat{\mathbf{\varphi}}$                                                                                                   |
| Differential volume, $\overrightarrow{dv}$   | dx dy dz                                                                                                                                | r dr dφ dz                                                                                                                                                  | $R^2 \sin\theta  dR  d\theta  d\phi$                                                                                                                                    |

## **CONFIDENTIAL**

#### BEB 20303

#### FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES

| Transformation              | Coordinate Variables                                                                            | Unit Vectors                                                                                                                                                                                                                                                                                                                                                              | <b>Vector Components</b>                                                                                                                                                                                                                             |
|-----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cartesian to Cylindrical    | $r = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$                                          | $\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$                                                                                                                                                                               | $A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$                                                                                                                                                          |
| Cylindrical to<br>Cartesian | $x = r \cos \phi$ $y = r \sin \phi$ $z = z$                                                     | $\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\mathbf{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\mathbf{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$                                                                                                                                                                             | $A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$                                                                                                                                                        |
| Cartesian to Spherical      | $R = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}(\sqrt{x^2 + y^2} / z)$ $\phi = \tan^{-1}(y/x)$ | $\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ $+ \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ $+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$         | $A_{R} = A_{x} \sin \theta \cos \phi$ $+ A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ $+ A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$             |
| Spherical to<br>Cartesian   | $x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$                 | $\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi + \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi + \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$ | $A_{x} = A_{R} \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_{y} = A_{R} \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{z} = A_{R} \cos \theta - A_{\theta} \sin \theta$ |
| Cylindrical to<br>Spherical | $R = \sqrt{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$                                  | $\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$                                                                                                                                                        | $A_{R} = A_{r} \sin \theta + A_{z} \cos \theta$ $A_{\theta} = A_{r} \cos \theta - A_{z} \sin \theta$ $A_{\phi} = A_{\phi}$                                                                                                                           |
| Spherical to Cylindrical    | $r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$                                           | $\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$                                                                                                                                                   | $A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$                                                                                                                                      |

SEMESTER/SESSION: SEMESTER II/2015/2016

PROGRAMME: BACHELOR DEGREE OF

ELECTRONIC ENGINEERING

COURSE: ELECTROMAGNETIC FIELDS & WAVES COURSE CODE: BEB 20303

| COOKSE. EEECTROMAGNETIC                                                                                   | CODE: BEB 20303                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Q = \int \rho_{\ell} d\ell,$                                                                             | $d\overline{H} = \frac{Id\overline{\ell} \times \overline{R}}{4\pi R^3}$                                                                     | $\overline{F}_{1} = \frac{\mu I_{1} I_{2}}{4\pi} \oint \oint \frac{d\overline{\ell}_{1} \times \left(d\overline{\ell}_{2} \times \hat{a}_{R_{21}}\right)}{R_{21}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q = \int \rho_s dS,$                                                                                     | $Id\bar{\ell} \equiv \bar{J}_s dS \equiv \bar{J} dv$                                                                                         | LILZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $Q = \int \rho_{v} dv$                                                                                    | $ \oint \overline{H} \bullet d\overline{\ell} = I_{enc} = \int \overline{J}_s dS $                                                           | $ \eta  = \frac{\sqrt{\mu/\varepsilon}}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\overline{F}_{12} = \frac{Q_1 Q_2}{4\pi\varepsilon_0 R^2} \hat{a}_{R_{12}}$                              | $\nabla \times \overline{H} = \overline{J}$                                                                                                  | $1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 \right]^{\frac{1}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\overline{E} = \frac{\overline{F}}{Q}$ ,                                                                 | $\psi_m = \int_s \overline{B} \bullet d\overline{S}$                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                           | $\psi_m = \oint \overline{B} \bullet d\overline{S} = 0$                                                                                      | $tan  2\theta_{\eta} = \frac{\sigma}{\omega \varepsilon}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\overline{E} = \frac{Q}{4\pi\varepsilon_0 R^2} \hat{a}_R$                                                | $\psi_m = \oint \overline{A} \bullet d\overline{\ell}$                                                                                       | $\tan \theta = \frac{\sigma}{\omega \varepsilon} = \frac{\overline{J}_s}{\overline{J}_{ds}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\overline{E} = \int \frac{\rho_{\ell} d\ell}{4\pi\varepsilon_{c} R^{2}} \hat{a}_{R}$                     | $\nabla \bullet \overline{B} = 0$                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 150011                                                                                                    | $\overline{B} = \mu \overline{H}$                                                                                                            | $\delta = \frac{1}{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\overline{E} = \int \frac{\rho_s dS}{4\pi\varepsilon_s R^2} \hat{a}_R$                                   | $\overline{B} = \nabla \times \overline{A}$                                                                                                  | $\varepsilon_0 = 8.854 \times 10^{-12} \text{ Fm}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\overline{E} = \int \frac{\rho_{\nu} d\nu}{4\pi\varepsilon_{0} R^{2}} \hat{a}_{R}$                       | $\overline{A} = \int \frac{\mu_0 I d\ell}{4\pi R}$                                                                                           | $\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                           | $\nabla^2 \overline{A} = -\mu_0 \overline{J}$                                                                                                | $\int dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                           | $\overline{F} = Q(\overline{E} + \overline{u} \times \overline{B}) = m \frac{d\overline{u}}{dt}$                                             | $\int \frac{dx}{(x^2 + c^2)^{3/2}} = \frac{x}{c^2 (x^2 + c^2)^{1/2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Q_{enc} = \oint_{S} \overline{D} \bullet d\overline{S}$                                                  | $d\overline{F} = Id\overline{\ell} \times \overline{B}$ $\overline{T} = \overline{r} \times \overline{F} = \overline{m} \times \overline{B}$ | $\int \frac{x dx}{\left(x^2 + c^2\right)^{3/2}} = \frac{-1}{\left(x^2 + c^2\right)^{1/2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\rho_{v} = \nabla \bullet \overline{D}$                                                                  | $\overline{m} = IS\hat{a}_n$                                                                                                                 | $\int \frac{dx}{(x^2 \pm c^2)^{1/2}} = \ln(x + \sqrt{x^2 \pm c^2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $V_{AB} = -\int_{0}^{B} \overline{E} \bullet d\overline{\ell} = \frac{W}{Q}$                              | $V_{emf} = -\frac{\partial \psi}{\partial t}$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $V = \frac{Q}{Q}$                                                                                         | $V_{emf} = -\int \frac{\partial \overline{B}}{\partial t} \bullet d\overline{S}$                                                             | $\int \frac{dx}{\left(x^2 + c^2\right)} = \frac{1}{c} tan^{-1} \left(\frac{x}{c}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $4\pi\varepsilon r$                                                                                       | $V_{emf} = \int (\overline{u} \times \overline{B}) \bullet d\overline{\ell}$                                                                 | $\int \frac{xdx}{\left(x^2 + c^2\right)} = \frac{1}{2} ln\left(x^2 + c^2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $V = \int \frac{\rho_{\ell} d\ell}{4\pi \varepsilon r}$ $\oint \overline{E} \bullet d\overline{\ell} = 0$ | $I_d = \int J_d . d\overline{S}, J_d = \frac{\partial \overline{D}}{\partial t}$                                                             | $\int \frac{x dx}{(x^2 + c^2)^{1/2}} = \sqrt{x^2 + c^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\nabla \times \overline{E} = 0$                                                                          | $\gamma = \alpha + j\beta$                                                                                                                   | $(x^- + c^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\overline{E} = -\nabla V$                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\nabla^2 V = 0$                                                                                          | $\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon}\right]^2 - 1}$                           | 7.EG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $R = \frac{\ell}{\sigma S}$                                                                               | 90 Str. Strong ( nearly renamed p. 1) 1, 14 p. 1                                                                                             | Congress (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $I = \int \overline{J} \bullet dS$                                                                        | $\beta = \omega \sqrt{\frac{\mu \varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon}\right]^2 + 1}$                            | As a second of the second of t |
|                                                                                                           | / r 1                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |