

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2016/2017**

COURSE NAME

: ELECTRIC CIRCUIT ANALYSIS II

COURSE CODE : BEF 12503

PROGRAMME CODE : BEV

EXAMINATION DATE : JUNE 2017

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

TERBUKA

BEF12503

Q1	(a)	With	the help of appropriate illustration, explain the working principle of inductor.	
				(4 marks)
	(b)		we the expression for the current $i(t)$ flowing in the circuit of Figure Q1 witch S is closed at time, $t = 0$.	(b) after
				(5 marks)
	(c)		Vdc battery is switched across a coil of 1 H inductance and 40 Ω resist in Figure Q1(b).	tance as
		(i)	Determine the current $i(t)$ flowing in the circuit.	(3 marks)
				(5 marks)
		(ii)	Calculate the resistor voltage, $V_R(t)$	(2 marks)
		(iii)	Calculate the inductor voltage, $V_L(t)$	
				(2 marks)
		(iv)	Find the instantaneous power, $p(t)$ and the energy stored, $e(t)$ in an in = 0.2s	ductor at t
				(4 marks)
Q2	(a)	The s	the switch in the Figure Q2(a) has been closed for a long time, and it is open.	
		(i)	Find the voltage across the capacitor, $v(t)$ for t>0	(3 marks)
		(ii)	Find the initial energy stored in the capacitor, $e(t)$	(3 marks)
		(iii)	Calculate the initial energy stored in the capacitor when C change to	50mF (5 marks)
		Conclude the relationship the initial energy and the value of capacito	or based on	
			the results obtained in Q2(a)(ii) and Q2(a)(iii)	(3 marks)
			2	

(b)

BEF12503

The switch in the Figure Q2(b) has been closed for a long time. At t=0, the switch is

		opened. Calculate the current through a inductor, $I_{LI}(t)$ when			
		(i) t < 0	3 marks)		
		(ii) t>0	3 marks)		
Q3	(a)	A series circuit which consists of a resistance, $R = 500 \Omega$, an inductance, $L = 0.25 H$, and a capacitance, $400 \mu F$ is connected to a 240 V, 50 Hz single-phase supply,			
		(i) Sketch the phasor domain circuit (4 marks)		
		(ii) Calculate the total impedance, Z_{total} of the circuit	3 marks)		
		(iii) Analyze the voltage source, Vs , dan voltage drop across component : V_{R} V_{C} of the circuit.	$_{\rm R},V_{\rm L}$ and		
			8 marks)		
		(iv) Construct the phase angle of the circuit	3 marks)		
		(v) Conclude the relationship of phasor current and the voltage supply base result obtained in Q3(a)(iv)	ed on the		
			2 marks)		
Q4	(a)	A sinusoidal waveform of single-phase AC voltage supply is defined as $v_s(t) = 311 \sin(314t) V$ as shown in Figure Q4(a) connected to a linear circuit.			
		(i) Find the complex impedance of the inductor, Z_L and the capacitor, Z_C .	2 marks)		
		(ii) Draw the phasor domain circuit.	(2 marks)		
		(iii) Use the Voltage Divider Rule, to determine the capacitor voltage, V_C (t). (3	marks)		
		(iv) Use the Ohms Law, calculate the $i_R(t)$, $i_C(t)$ and $i(t)$.	3 marks)		
		3			

BEF12503

	(b)	A single-phase sinusoidal current supply is connected to passive elements as shown in Figure Q4(b)			
		(i) Determine the complex impedance of the inductor and the capacitor	(2 marks)		
		(ii) Construct the phasor domain circuit	(2 marks)		
		(iii) Use the Current Divider Rule, find the output current $i_0(t)$	(2 marks)		
		(iv) Calculate the $i_I(t)$ of the circuit	(2 marks)		
		(v) Illustrate the phasor angle of the circuit TERBUKA	(2 marks)		
Q5	(a)	(i) Draw the circuit of purely capacitive load and describe an expression of v and $p(t)$	(t), i(t)		
			(5 marks)		
		(i) Illustrate the V-I phase diagram for purely capacitive load	(1 mark)		
		(ii) Illustrate the V-I sine wave diagram and power wave diagram for purely capacitive load			
			(2 marks)		
	(b)	An impedance of $(14+j5)$ Ω is connected in parallel with an impedance of (This combination is then connected in series with an impedance of $(10+j12)$ whole circuit connected across a 100 V_{ac} , 50 Hz supply.	$12 - j8$) Ω . Ω . If the		
		(i) Draw phasor circuit and calculate the total load impedance			
			(3 marks)		
		(ii) Calculate the value of supply current			
		(iii) Calculate the active power consumed by the circuit	(1 marks)		
			(3 marks)		

BEF12503

(iv) Calculate the reactive power consumed by the circuit

(2 marks)

(v) Calculate the power factor of the circuit

(2 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION

: II / 2016/2017

COURSE

: ELECTRIC CIRCUIT ANALYSIS II

PROGRAMME

: 1 BEV

COURSE CODE

: BEF12503

FIGURE Q1(b)

FINAL EXAMINATION

SEMESTER/SESSION

: II / 2016/2017

COURSE

: ELECTRIC CIRCUIT ANALYSIS II

PROGRAMME

: 1 BEV

COURSE CODE

: BEF12503

