

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2017/2018

COURSE NAME

: ELECTRICAL CONTROL SYSTEM

COURSE CODE

: BEF 33003

PROGRAMME CODE

: BEV

EXAMINATION DATE : JUNE / JULY 2018

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

BEF33003

Q1 (a) List four (4) advantages of closed loop control system.

(6 marks)

- (b) Describe the meaning of each control system component as listed below:
 - (i) Input.

(1 marks)

(ii) Output.

(1 marks)

(c) Amira is assigned by his lecturer to obtain a transfer function, $\frac{C(s)}{R(s)}$ for a steam distillation system as shown in **Figure Q1(c)**. The transfer function obtained by Amira is shown as:

$$\frac{C(s)}{R(s)} = \frac{\text{G1G2G3}^2}{\text{G3} + \text{G1H4}[\text{G3} + \text{H3}(\text{G2G3})(\text{H1} + \text{G3H2} + 1)] + \text{G1G2G3H5}}$$

By using block diagram algebra approach, prove that the transfer function, $\frac{C(s)}{R(s)}$ obtained by Amira is right or wrong.

(17 marks)

Q2 (a) List two (2) physical laws of science and engineering used for developing a mathematical model in practice.

(5 marks)

(b) Describe the definition of translational mechanical system.

(3 marks)

(c) Determine the transfer function, $G(s) = \frac{X(s)}{F(s)}$ for the translational mechanical system as shown in **Figure Q2(c)**. Given the parameters of the system are as below:

$$M_1=M_2=M_3=1 \text{ Kg}$$

 $D_1=D_2=D_3=2 \text{ N-s/m}$

 $K_1 = K_2 = K_3 = 1 \text{ N/m}$

(17 marks)

BEF33003

Q3 (a) Differentiate between over damped, critically damped and underdamped response.

(6 marks)

- (b) Based on the block diagram of a positioning system as shown in Figure Q3(b):
 - (i) Determine the transfer function of the system.

(3 marks)

(ii) Calculate the peak time (T_p) , rise time (T_r) , percentage of overshoot $(\%\mu_s)$ and settling time (T_s) of the system.

(9 marks)

(c) A feedback control system is shown in **Figure Q3(c)**. The system will be stabled if the K_c value is positive. Using Routh Hurwitz stability Criterion, investigate the range of K_c for stable system.

(7 marks)

- Q4 The simplified block diagram for transformer tap changer tracking system is shown in **Figure Q4**.
 - (a) By using root locus sketching approach, investigate either each of these statement is correct or incorrect to represent the root locus characteristics for the system shown in **Figure Q4**: number of branches is 3, there is no angle of departure and angle of arrival, root locus exists on real axis between: 0 and -3, intersect of asymptotes is at -1.5, the system is stable when the value of K less than 0, and if the value of K is equal to -2.25225 the system is stable.

(17 marks)

(b) Sketch the root locus of the system.

(8 marks)

TERBUKA

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION

: SEM II/ 2017/2018

PROGRAMME CODE

: BEV

COURSE NAME

: ELECTRICAL CONTROL SYSTEM COURSE CODE

: BEH33003

Figure Q1(c)

Figure Q2(c)

FINAL EXAMINATION

SEMESTER / SESSION

: SEM II/ 2017/2018

PROGRAMME CODE

: BEV

COURSE NAME

: ELECTRICAL CONTROL SYSTEM COURSE CODE

: BEH33003

Figure Q3(b)

Figure Q3(c)

Figure Q4

BEF33003

FINAL EXAMINATION

SEMESTER / SESSION : SEM II/ 2017/2018

PROGRAMME CODE

: BEV

COURSE NAME

: ELECTRICAL CONTROL SYSTEM COURSE CODE

: BEH33003

FORMULAE

Table A Laplace transform table

2/1	
f(t)	F(s)
$\delta(t)$	1
u(t)	1
	S
tu(t)	1
	$\overline{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{-at}u(t)$	1
gin extra(t)	s+a
$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t u(t)$	
cos anu(t)	$\frac{s}{s^2 + \omega^2}$
$e^{-at}\sin \omega t u(t)$	ω
22-20000(0)	$\overline{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega tu(t)$	(s+a)
	${(s+a)^2+\omega^2}$

BEF33003

FINAL EXAMINATION

SEMESTER / SESSION : SEM II/ 2017/2018

PROGRAMME CODE : BEV

COURSE NAME

: ELECTRICAL CONTROL SYSTEM COURSE CODE

: BEH33003

Table B Laplace transform theorems

Name	Theorem
Frequency shift	$\mathscr{L}\left[e^{-at}f(t)\right] = F(s+a)$
Time shift	$\mathscr{L}[f(t-T)] = e^{-sT}F(s)$
Differentiation	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{k-1}(0^-)$
Integration	$\mathscr{L}\left[\int_{0^{-}}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s}$
Initial value	$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$
Final value	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

Table C 2nd Order prototype system equations

$\frac{C(s)}{R(s)} = \frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$	$T_r = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$
$\mu_p = e^{rac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$
$T_s = \frac{4}{\zeta \omega_n} $ (2% criterion)	$T_s = \frac{3}{\zeta \omega_n} $ (5% criterion)

