

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2017/2018**

COURSE NAME

: INTELLIGENT CONTROL SYSTEM

COURSE CODE

: BEH 41803

PROGRAMME CODE : BEJ

EXAMINATION DATE : JUNE/JULY 2018

DURATION

: 3 HOURS

INSTRUCTION

: ANSWERS ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

Q1 The output equation for single layer Neural Network with two inputs $(X_1 \text{ and } X_2)$, a bias (B) and an output (Y) is given below:

$$Y = \begin{cases} 1 & if \ W_1 X_1 + W_2 X_2 + B \ge \theta \\ 0 & elsewhere \end{cases}$$

where W_1 and W_2 are weights, X_1 and X_2 are inputs, B is bias, Y is output and θ is threshold value. This network will be used to train the following sample:

X_2	X_1	Y
0	0	0
1	1	0
2	$\bar{3}$	Ō
Towns of the same	-1	0
-2	0	1
-1	w 1	1
0	-2	1

(a) Plot all the samples in a scatter plot of X_2 versus X_1 .

(2 marks)

(b) By using Adaptive Linear Element (*ADALINE*) training framework, analyze the optimal linear decision boundary model after the sample been trained in its first epoch (means that all the patterns have passed through once). Use learning rate, $\alpha = 0.5$ and the following table for analysis.

Iter	X_2	X_1	T	S	T-S	W_2	W_1	В
0						2	-2	1
1	0	0	0					
2	1	1	0					
3	2	3	0		4-11			
4	1	-1	0					
5	-2	0	1					
6	-1	-1	1		The state of the s			
7	0	-2	1					

(21 marks)

(c) From Q1 (b), construct the boundary decision function in the scatter plot of Q1 (a). (2 marks)

Q2 The Multi-layer Perceptron Neural Network (MLPNN) configuration which is to be trained using the backpropagation algorithm is shown in **Figure Q2**. All neurons in layers i have linear activation functions, and all neurons in layer j and layer k have sigmoid activation functions given by:

$$f(net_k) = f(net_j) = \frac{1}{1 + e^{-Cnet}}$$

(a) If C = 1, T_k is the target, n is learning rate, and net is the summed input of neuron, derive the equations of weights adaptation (ΔW_{25} , ΔW_{45} , ΔW_{14} , ΔW_{12} , ΔW_{32} , ΔW_{34}) and bias adaptation (ΔB_5 , ΔB_2 , ΔB_4) between layer if the MLPNN's error model is given by $E = 0.5 (T_k - O_k)^2$. [Note: Ignore the given values during derivation]

(17.5 marks)

(b) If the control input value and target is shown below, analyze the sum square error of the model.

X_{I}	X_3	T_k	
1	1	1	
1	-1	1	

(7.5 marks)

Q3 (a) In the field of hydrology, the study of rainfall patterns is most important. The rate of rainfall, in units of mm/hour, falling in a particular geographic region could be described linguistically. Defining membership functions for linguistic variables 'heavy' and 'light' as follows:

'heavy'=
$$\left\{ \begin{array}{c} 0.2/_{5} + 0.4/_{8} + 0.6/_{12} + 0.8/_{20} + 1.0/_{30} \end{array} \right\}$$
'light'= $\left\{ \begin{array}{c} 1.0/_{5} + 0.8/_{8} + 0.5/_{12} + 0.1/_{20} \end{array} \right\}$

Analyze the final membership function for the following linguistic phrases:

(i) Plus *light* and not (very *light*).

(4 marks)

(ii) Slightly light and not (very heavy)

(4 marks)

(iii) $(heavy + light)(light \ light)$

(3 marks)

(b) Membership function for *Normal Speed (NS)-km/h* and *Normal Temperature (NT) -* ^o*C* is given in **FigureQ3** (b) and equation below respectively where x is x is temperature and y is speed.

$$NT(x) = \begin{cases} 0 & ---- & for \ x < 0 \\ \frac{x}{20} & ---- & for \ 0 < x < 20 \\ 1 & ---- & for \ 20 \le x \le 100 \\ \frac{140 - x}{40} & ---- & for \ 100 < x < 140 \\ 0 & ---- & for \ x \ge 140 \end{cases}$$

- (i) Determine $M=NT \times NS$ for a values of $x = \{15, 90, 130\}$ and $y = \{25, 60, 115, 125\}$. (5 marks)
- (ii) Determine projection values of $M(M^l \text{ and } M^2)$ (1 mark)
- (iii) If the relationship between NS and Gear Ration (GR) is given in below, analyze the relationship between Normal Temperature (NT) and Gear Ratio (GR) by using Max-Min compositional operator.

	GR				
		1	2	3	4
SN	25	1	0	0	0
	60	0	1	0	0
Ţ	115	0	0	1	0
	125	0	0	0	1

(7 marks)

(iv) Determine $M=NT \times NS$ for a values of $x = \{15, 90, 130\}$ and $y = \{25, 60, 115, 125\}$.

ender & and the manufacturing of the end of

- Q4 An engineer needs to design a fuzzy position control system using the following specifications:
 - Each antecedent (for E which is error and ΔE which is change in error) and consequent (ΔU which is change in control output) must have only 3 fuzzy sets: Negative (N), Zero (Z) and Positive (P).
 - The membership functions for the two antecedents and one consequent are given in Figure Q4.
 - Use the Mamdani rule base and disjunctive aggregator.
 - (a) With reference to the under damped transient response, design the most appropriate fuzzy control rules in matrix form to solve the positioning problem with minimum of overshoot if *error* = *input output*. Give justification for each of the designed rules.

(7 marks)

(b) Based on the rules developed in Q4(a), analyze model of output before Deffuzzification for E=-15.0 and ΔE = 1.0 case.

(8 marks)

(c) Based on answer from Q4(b), determine the crisp value of ΔU using Bisector of Area (BOA) method.

(10 marks)

-END OF QUESTIONS -

Mine late of

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2017/2018

COURSE NAME

: INTELLIGENT CONTROL SYSTEM

PROGRAMME CODE: BEJ

COURSE CODE

: BEH 41803

INPUT LAYER (i)

HIDDEN LAYER (j) OUTPUT LAYER (k)

Figure Q2

Figure Q3 (b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2017/2018

COURSE NAME

: INTELLIGENT CONTROL SYSTEM

PROGRAMME CODE: BEJ

COURSE CODE : BEH 41803

CONFIDENTIAL

7

employed the street regression and reserved to the street of the street

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2017/2018

COURSE NAME

PROGRAMME CODE: BEJ

COURSE CODE

: BEH 41803

FORMULAS

1) Cartesian product

$$\mu_{A_{1}x_{2}x_{3}x_{3}....A_{n}}(x_{1},x_{2},x_{n}) = min[\mu_{A_{1}}(x_{1}),\mu_{A_{2}}(x_{2}),...\mu_{A_{n}}(x_{n})],$$

: INTELLIGENT CONTROL SYSTEM

2) **Mamdani Implication**

$$(\mu_A(x)\Lambda\mu_B(x))$$

Disjunctive Aggregrator 3)

$$\mu_{y}(y) = max \left[\mu_{y^{1}}(y), \mu_{y^{2}}(y), \dots, \mu_{y^{r}}(y) \right]$$

4) **Mamdani Implication Operator**

$$\Phi_c[\mu_A(x), \mu_B(y)] = \mu_A(x) \wedge \mu_B(y)$$

5) **Backpropogation Chain Rule**

$$\Delta W_{jk} = -n \frac{\partial E}{\partial W_{jk}}$$

$$\frac{\partial E}{\partial W_{ik}} = \frac{\partial E}{\partial O_K} \frac{\partial O_K}{\partial NET_K} \frac{\partial NET_K}{\partial W_{ik}} \text{ Where } \delta_K = \frac{\partial E}{\partial NET_K}$$

$$\Delta W_{ij} = -n \frac{\partial E}{\partial W_{ii}}$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial NET_K} \frac{\partial NET_K}{\partial O_J} \frac{\partial O_J}{\partial NET_J} \frac{\partial NET_J}{\partial W_{ij}} \text{ Where } \delta_J = \frac{\partial E}{\partial NET_J}$$

except if every each me, except a relief of the except and except