

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

ANALYTICAL AND ORGANIC

CHEMISTRY

COURSE CODE

: BNQ 10203

PROGRAMME

: 1 BNN

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: THIS PAPER CONTAINS TWO

PARTS (PART A AND PART B). ANSWER TWO (2) QUESTIONS

FROM PART A AND TWO (2)

QUESTIONS FROM PART B

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PAGES

CONFIDENTIAL

PART A (ANALYTICAL CHEMISTRY)

Q1 (a) Differentiate between sample standard deviation and population standard deviation. Give the equation involves in each meaning.

(4 marks)

- (b) Describe the preparation of the following chemicals:
 - (i) 500 mL of 0.0750 M AgNO₃ from the solid reagent.
 - (ii) 1.00 L of 0.285 M HCl, with 6.00 M solution of the reagent.

(3 marks)

- (c) A solution was prepared by dissolving 1210 mg of K₃Fe(CN)₆ in sufficient water to give 775 mL. Calculate the following:
 - (i) The molar analytical concentration of K₃Fe(CN)₆.
 - (ii) The molar concentration of K⁺.
 - (iii) The molar concentration of Fe(CN)₆³⁻.
 - (iv) The weight /volume percentage of K₃Fe(CN)₆.
 - (v) The number of millimoles of K⁺ in 50.0 mL of this solution.

(10 marks)

(d) The measurements of dissolved oxygen from one river at the same locations were taken for two consecutive weeks as reported in Table Q1(d). Examine whether the mean of dissolved oxygen concentration is less than 5 mg/L at the 90% confidence level. State clearly the null and the alternative hypothesis.

Table O1(d)

Table QI(d)				
Week	Dissolved			
number	Oxygen, mg/L			
1	4.9			
2	5.1			
3	5.6			
4	4.3			
5	4.7			
6	4.9			
7	4.5			
8	5.1			

(8 marks)

Q2 (a) Define population mean and sample mean.

(2 marks)

(b) Explain on instrumental errors and method errors. By using one example for each error propose on how these errors could effects the analytical results.

(8 marks)

- (c) The following results were obtained for the determination of the Zn in blood in mg/L: 4.48, 4.43, 4.42, 4.65 and 4.51
 - (i) Determine whether the 4.65 mg/L result is an outlier or should be retained at the 95 % confidence level.

(4 marks)

(ii) If another three further measurements which are 4.40, 4.41 and 4.50 mg/L were taken, determine whether the 4.65 mg/L result is an outlier or should be retained at the 95 % confidence level.

(4 marks)

(iii). Evaluate the precision of result in (i) and (ii).

(7 marks)

Q3 (a) State the objective of the sampling process and list the steps involve in obtaining a laboratory sample.

(3 marks)

(b) Differentiate between random and systematic error. Briefly explain on how to quantify random error and how sysmatic error can be minimized or reduced.

(8 marks)

(c) The homogeneity of the chloride level in a water sample from Lake A, tested by analyzing portions drawn from the top and from the near bottom of 5 m lake's depth was tabulated in Table **Q3(c)**. Determine if the means of two reading locations are different using *t-test* at the 95% confidence level.

(8 marks)

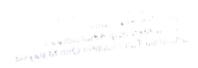
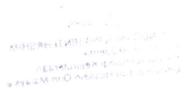



Table Q3(c)

Тор	Bottom	
26.30	26.22	
26.43	26.32	
26.28	26.20	
26.19	26.11	
26.49	26.42	

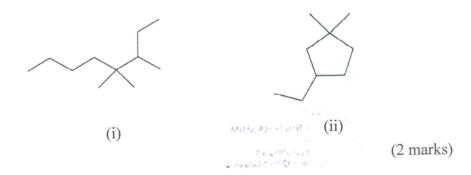
(d) With the aid of diagram, differentiate between internal standard methods and standard addition methods. Explaining on the usage of both standards in an analytical test.

(6 marks)

PART B (ORGANIC CHEMISTRY)

- Q4 (a) Define ionic bond and covalent bond and give an example for each. (3 marks)
 - (b) Show the resonance structure of the compound below by showing the delocalization of its electrons:

(3 marks)


(c) Construct the energy level diagram for CO.

(6 marks)

- (d) (i) Identify chiral centres, if any in 2-cyclopentenol and 3- cyclopentenol. (3 marks)
 - (ii). Assign absolute configurations as R or S due to Cahn-Ingold-Prelog system to each of the the following compounds.

$$H_3C$$
 H_3C
 H_3C

- (+)-2-methyl-1-butanol
- (+)-1-Bromo-2-methylbutane (2 marks)
- (e) (i) Give the IUPAC name for the following compounds.

- (ii). Arrange the following isomeric alkanes in order of increasing boiling point.
 - (a) n-heptane
 - (b) 2,3-dimethylpentane
 - (c) 2,2,3-trimethylbutane

(3 marks)

(iii). State the number of isomer C₆H₁₄ could have. Draw and name FOUR(4) of it.

(3 marks)

Q4 (a) Give the IUPAC name for the compounds below.

OH
$$CI \qquad CO_2H$$

$$C(CH_3)_3 \qquad (ii) \qquad (2 marks)$$

(b) In Birch reduction, reaction of benzene with sodium and methanol in liquid ammonia converts it to 1,4 cyclohexadiene as the following reaction equation. Write a mechanism involves in the reaction.

(c) Complete the reaction below:

(i)
$$+ CH_3COCCH_3 \xrightarrow{A} B + C$$

(ii)
$$SO_3$$
 D SO_3 E H_2SO_4

(iii)
$$CH_3$$
 HNO_3 F $+$ G $+$ H Acetic anhydrate (5 marks)

- (d) Write the structural formulas for each of the following.
 - (i) 3-ethyl-2-hexanone
 - (ii) 2-phenylbutanedial
 - (iii) 4-methylcyclohexanone

(3 marks)

(e) Complete the chemical reactions below.

(ii)
$$\frac{1. O_3}{2. H_2O, Zn} \quad C + D$$

(4 marks)

(f) Aldehyde and ketone can be prepared by oxidation of alcohol in the laboratory. Suggest the reactions and chemicals or reagents involve by giving **ONE** (1) example of alcohol for each preparation.

mastering * boomed think? (5 marks)

- Q6 (a) Write the structural formulas for each of the following alcohols below.
 - (i) 2-ethyl-1-butanol
 - (ii) 5,5-dimethyl-2-hexanol
 - (iii) 6-methyl-3-propyl-2-heptanol

(3 marks)

(b) (i). Rank the following alcohols in order of increasing reaction rate with HBr.

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$$
 , $(\text{CH}_3)_3\text{COH}$, $(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3$

(3 marks)

(ii). Write the mechanism involves of the reaction of alcohols with hydrogen halides below.

$$(CH_3)_3COH + HCl \rightarrow (CH_3)_3CCl + HOH$$
 (4 marks)

(c) Complete the reactions below.

(i)
$$\begin{array}{c} 1. \text{ A in B} \\ \hline \\ \text{CH}_3 \quad 3. \text{ H}_3\text{O}^+ \\ \end{array}$$

(ii)
$$\sim$$
 CH₂CI \sim NaCN \sim C \sim H₂O,H₂SO₄ \sim D

(iv)
$$H_3C$$
 CH_3 Ethanol, H_2SO_4 F CO_2H (6 marks)

(d) In the laboratory, aspirin is synthesized by reacting the salicylic acid (a carboxylic acid) with acetic anhydrate in the presence of phosphoric acid as a catalyst due to the reaction below:

Calculate the percentage yield of the aspirin if the mass salicylic acid used is 2.0 g and mass of produced aspirin is 2.30 g.

(4 marks)

- (e) (i). State the numbers of constitutionally isomeric ethers with a formula of $C_4H_{10}O$. Write all the structures. (2 marks)
 - (ii) Complete the reaction below.

(1)
$$2 \text{ CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$$
 $\xrightarrow{\text{H}_2\text{SO}_4}$ $\xrightarrow{\text{A}}$ $\xrightarrow{\text{H}_2\text{O}}$

(2) $(CH_3)_2CHCH_2ONa + CH_3CH_2Br \rightarrow B + C$

(3)
$$CH_2CO_2H$$
 $SOCl_2$ heat

(3 marks)

- END OF QUESTION
AMERICAN STATE AND SCAN PROPERTY OF COMMERCIAL STATE AND SCAN PROPERTY OF COMMERCIAL STATE AND STATE OF COMMERCIAL AND STATE OF C

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2013/2014 COURSE : BNN

SUBJECT: ANALYTICAL AND ORGANIC CHEMISTRY CODE : BNQ 10203

Table 1. Periodic Table of Elements

Element	Symbol	Atomic number (Z)	Atomic mass (A)	Element	Symbol	Atomic number (Z)
Actinium	Ac	89	227.0278	Mercury	Hg	80
Aluminum	Al	13	26.98154	Molybdenum	Mo	42
Americium	Am	95	(243)	Neodymium	Nd	60
Antimony	Sb	51	121.75	Neon	Ne	10
Argon	Ar	18	39.948	Neptunium	Np	93
Arsenic	As	33	74.9216	Nickel	Ni	28
Astatine	At	85	(210)	Niobium	Nb	41
Barium	Ba	56	137.33	Nitrogen	N	7
Berkelium	Bk	97	(247)	Nobelium	No	102
Beryllium	Be	4	9.01218	Osmium	Os	76
	Bi	83	208.9804	Oxygen	0	8
Bismuth	В	5	10.81	Palladium	Pd	46
Boron	Br	35	79.904	Phosphorus	P	15
Bromine	Cd	48	112.41	Platinum	Pt	78
Cadmium	Ca	20	40.08	Plutonium	Pu	94
Calcium	Cf	98	(251)	Polonium	Po	84
Californium	C	6	12.011	Potassium	K	19
Carbon		58	140.12	Praseodymium	Pr	59
Cerium	Ce	55	132.9054	Promethium	Pm	61
Cesium	Cs	17	35.453	Protactinium	Pa	91
Chlorine	Cl		51.996	Radium	Ra	88
Chromium	Cr	24	58.9332	Radon	Rn	86
Cobalt	Со	27		Rhenium	Re	75
Copper	Cu	29	63.546	Rhodium	Rh	45
Curium	Cm	96	(247) 162.50	Rubidium	Rb	37
Dysprosium	Dy	66		Ruthenium	Ru	44
Einsteinium	Es	99	(254)	Samarium	Sm	62
Erbium	Er	68	167.26	Scandium	Sc	21
Europium	Eu	63	151.96	Selenium	Se	34
Fermium	Fm	100	(257) 18.998403	Silicon	Si	14
Fluorine	F	9		Silver	Ag	47
Francium	Fr	87	(223)	Sodium	Na	11
Gadolinium	Gd	64	157.25	Strontium	Sr	38
Gallium	Ga	31	69.72	Sulfur	S	16
Germanium	Ge	32	72.59	Tantalum	Ta	73
Gold	Au	79	196.9665		Tc	43
Hafnium	Hf	72	178.49	Technetium	Te	52
Helium	Не	2	4.00260	Tellurium	Tb	65
Holmium	Но	67	164.9304	Terbium	TI	81
Hydrogen	Н	1	1.0079	Thallium	Th	90
Indium	In	49	114.82	Thorium	Tm	69
Iodine	I	53	126.9045	Thulium	Sn	50
Iridium	Ir	77	192.22	Tin		22
Iron	Fe	26	55.847	Titanium	Ti	74
Krypton	Kr	36	83.80	Tungsten	W U	92
Lanthanum	La	57	138.9055	Uranium		23
Lawrencium	Lr	103	(260)	Vanadium	V	54
Lead	Pb	82	207.2	Xenon	Xe	
Lithium	Li	3	6.941	Ytterbium	Yb	70
Lutetium	Lu	71	174.97	Yttrium	Y	39
Magnesium	Mg	12	24.305	Zinc	Zn	30
Manganese	Mn	25	54.9380	Zirconium	Zr	40
Mendelevium	Md	101	(258)			

Commence of the reasons were provided as the second of the

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2013/2014 COURSE : BNN

SUBJECT: ANALYTICAL AND ORGANIC CHEMISTRY CODE: BNQ 10203

Table 2

Degrees of	00.51	90.6/	050	99%	99.9%
Freedom	80%	90%	95%		
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.30	9.92	31.6
3	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.60	8.61
5	1.48	2.02	2.57	4.03	6.87
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.90	2.36	3.50	5.41
8	1.40	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
15	1.34	1.75	2.13	2.95	4.07
20	1.32	1.73	2.09	2.84	3.85
40	1.30	1.68	2.02	2.70	3.55
60	1.30	1.67	2.00	2.62	3.46
∞	1.28	1.64	1.96	2.58	3.29

^{© 2004} Thomson - Brooks/Cole

Table 3

Confidence Levels for Various Values of z		
Confidence Level, %	z	
50	0.67	
68	1.00	
80	1.28	
90	1.64	
95	1.96	
95.4	2.00	
99	2.58	
99.7	3.00	
99.9	3.29	

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2013/2014

COURSE: BNN

SUBJECT: ANALYTICAL AND ORGANIC CHEMISTRY CODE : BNQ 10203

Table 4

n	Q _{crit} CL at 90%	Q _{crit} CL at 95%	Q _{crit} CL at 99%
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568