

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

: ELECTRICAL PRINCIPLES II

COURSE CODE : BNR10303

PROGRAMME : 1 BND/BNF

EXAMINATION DATE : JUN 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SEVENTEEN (17) PAGES

- Q1 (a) A current source in a linear circuit has $i_s = 8 \cos(500\pi t 25^\circ) A$
 - (i) Determine the amplitude of the current?
 - (ii) Determine the angular frequency?
 - (iii) Determine the frequency of the current.
 - (iv) Calculate i_s at t = 2 ms.

(5 marks)

- (b) Two voltages v_1 and v_2 appear in series so that their sum is $v = v_1 + v_2$. If $v_1 = 10\cos(50t \pi/3)$ V and $v_2 = 12\cos(50t + 30^\circ)$ V. Calculate total of voltage, v. (4 marks)
- (c) A linear network has a current input $4\cos(\omega t + 20^{\circ})$ A and a voltage output $10\cos(\omega t + 110^{\circ})$ V. Calculate the associated impedance.

(3 marks)

- (d) By analyzing the circuit shown in Figure Q1(d), determine the value of Z_T . (8 marks)
- Q2 (a) Using Nodal analysis, calculate V_1 and V_2 in the circuit shown in Figure Q2(a). (10 marks)
 - (b) Calculate current I_0 in the circuit of Figure **Q2(b)** using mesh analysis. (10 marks)
- Q3 (a) Calculate the rms value of the current waveform in Figure Q3(a). If the current is passed through a resistor, determine the average power absorbed by the resistor.

 (7 marks)
 - (b) For the circuit in Figure **Q3(b)**, discover the wattmeter reading. (6 marks)
 - (c) The variable resistor R in the circuit of Figure Q3(c) is adjusted until it absorbs the maximum average power. Calculate R and the maximum average power absorbed. (7 marks)

Q4			0-V rms, 60-Hz source is applied to a load impedance Z. The apparing the load is 120 VA at a power factor of 0.707 lagging.	ent power
		(i)	Calculate the complex power.	(3 marks)
		(ii)	Calculate the rms current supplied to the load.	(2 marks)
		(iii)	Calculate the impedance, Z.	(2 marks)
		(iv)	Assuming that $Z = R + j\varpi L$, identified the values of R and L.	(3 marks)
(b) Three loads are connected in parallel to a $120 \angle 0^{\circ}$ V r kVAR at pf =0.85 lagging; load 2 absorbs 90 kW and absorbs 100 kW at pf = 1.			be loads are connected in parallel to a $120\angle0^{\circ}$ V rms source. Load 1 R at pf =0.85 lagging; load 2 absorbs 90 kW and 50 kVAR leading; rbs 100 kW at pf = 1.	absorbs 60 and load 3
		(i)	Find the equivalent impedance.	(7 marks)
		(ii)	Calculate the power factor of the parallel combination.	(1 mark)
		(iii)	Determine the current supplied by the source.	(2 marks)
Q5	For t	he un	balanced circuit in Figure Q5 , calculate:	
		(a) tl	he line currents,	(10 marks)
		(b) t	he total complex power absorbed by the load, and	(5 marks)
		(c) tl	he total complex power absorbed by the source.	(5 marks)
Q6	(a)	Ву А	Analyzing the circuit of Figure Q6(a), determine the phasor currents	I ₁ and I ₂ (7 marks)
	(b)		the circuit in Figure Q6(b) , calculater the coupling coefficient and ed in the coupled inductors at $t = 1.5$ s.	the energy (13 marks)

- END OF QUESTION -

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME: 1 BND/BNF COURSE CODE: BNR10303

FIGURE Q1(d)

FIGURE Q2(a)

FIGURE Q2(b)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME: 1 BND/BNF COURSE CODE: BNR10303

FIGURE Q3(a)

FIGURE Q3(b)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME: 1 BND/BNF COURSE CODE: BNR10303

FIGURE Q3(c)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME: 1 BND/BNF COURSE CODE: BNR10303

FIGURE Q6(a)

FIGURE Q6(b)

SEMESTER/SESSION: SEM II/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES II

PROGRAMME: 1 BND/BNF COURSE CODE: BNR10303

APPENDIX

Chapter 1

Y – Delta Conversion

$$Z_{a} = \frac{Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1}}{Z_{1}}$$

$$Z_{b} = \frac{Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1}}{Z_{2}}$$

$$Z_{c} = \frac{Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1}}{Z_{3}}$$

Delta – Y Conversion

$$Z_1 = \frac{Z_b Z_c}{Z_a + Z_b + Z_c}$$

$$Z_2 = \frac{Z_c Z_a}{Z_a + Z_b + Z_c}$$

$$Z_3 = \frac{Z_a Z_b}{Z_a + Z_b + Z_c}$$

SEMESTER/SESSION

: II / 2013/2014

PROGRAMME

: 1 BND/BNF

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

APPENDIX

A general expression for the sinusoid

Frequency: $f = \frac{1}{T}Hz$

Angular frequency: $\omega = 2\pi f$ Hz

Trigonometric identities

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

 $\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$

 $\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$

 $\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$

 $\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t$

Mathematic operation of complex number

Addition: $z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$

Subtraction: $z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$

Multiplication: $z_1 z_2 = r_1 r_2 \angle \phi_1 + \phi_2$

Division: $\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \phi_1 - \phi_2$

Reciprocal: $\frac{1}{z} = \frac{1}{r} \angle -\phi$

Square root: $\sqrt{z} = \sqrt{r} \angle \phi/2$

Complex conjugate: $z^* = x - jy = r \angle - \phi = re^{-j\phi}$

Euler's identity: $e^{\pm j\phi} = \cos \phi \pm j \sin \phi$

SEMESTER/SESSION : II / 2013/2014

PROGRAMME : 1 BND/BNF

COURSE NAME

: ELECTRICAL PRINCIPLES II

COURSE CODE : BNR 10303

APPENDIX

Sum	Summary of voltage-current relationship						
Element	Time domain	Frequency domain					
R	v = Ri	V = RI					
L	$v = L \frac{di}{dt}$	$V = j\omega LI$					
С	$i = C \frac{dv}{dt}$	$V = \frac{I}{j\omega C}$					

Impedances and admittances of passive elements					
Element	Impedance	Admittance			
		1			
R	Z = R	$Y = \frac{1}{R}$			
L	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$			
С	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$			

Relationship between differential, integral operation in phasor listed as follow:

$$v(t) \to V = V \angle \phi$$

$$\frac{dv}{dt} \to j\omega V$$

$$\int vdt \to \frac{V}{j\omega}$$

SEMESTER/SESSION

: II / 2013/2014

PROGRAMME

: 1 BND/BNF

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

APPENDIX

Chapter 2

Superposition Theorem

When a circuit has sources operating at different frequencies,

- The separate phasor circuit for each frequency must be solved independently,
- The otal response is the <u>sum of time-domain responses</u> of all the individual phasor circuits.

Thevenin and Norton Equivalent Circuits

Thevenin transform

Norton transform

SEMESTER/SESSION

: II / 2013/2014

PROGRAMME

: 1 BND/BNF

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

APPENDIX

Source Transformation

Chapter 3

Average Power:
$$P = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{1}{2} V_m I_m cos(\theta_v - \theta_i)$$

Load Impedance:
$$Z_L = Z_{TH} = R_{TH} + jX_{TH}$$

 $Z_{TH}^* = R_{TH} - jX_{TH}$

Maximum Average Power:
$$P_{max} = \frac{|V_{TH}|^2}{8 R_{TH}}$$

If the load is purely real :
$$R_{L} = \sqrt{R_{TH}^{2} + X_{TH}^{2}} = \left|Z_{TH}\right|$$

Effective Current:
$$I_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2} dt} = I_{rms}$$

The rms value of a sinusoid
$$i(t) = I_m cos(wt)$$
 is given by: $I_{rms}^2 = \frac{I_m}{\sqrt{2}}$

The average power can be written in terms of the rms values:

$$\boldsymbol{I}_{\text{eff}} = \frac{1}{2} \, \boldsymbol{V}_{\text{m}} \, \, \boldsymbol{I}_{\text{m}} \, \cos \left(\boldsymbol{\theta}_{\text{v}} - \boldsymbol{\theta}_{\text{i}}\right) = \boldsymbol{V}_{\text{rms}} \, \, \boldsymbol{I}_{\text{rms}} \, \cos \left(\boldsymbol{\theta}_{\text{v}} - \boldsymbol{\theta}_{\text{i}}\right)$$

State of the second sec

SEMESTER/SESSION

: II / 2013/2014

PROGRAMME

1 BND/BNF

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

APPENDIX

Apparent Power and Power Factor:

$$P = V_{ms} I_{ms} \cos(\theta_v - \theta_i) = S\cos(\theta_v - \theta_i)$$

Apparent Power, S

Power Factor, pf

Complex power S is the product of the voltage and the complex conjugate of the current:

$$\mathbf{V} = V_{m} \angle \theta_{v} \qquad \qquad \mathbf{I} = I_{m} \angle \theta_{i}$$

$$\mathbf{I} = \mathbf{I}_{\mathsf{m}} \angle \boldsymbol{\theta}_{\mathsf{i}}$$

$$\frac{1}{2}\,V\;I^* = V_{rms}\;I_{rms} \, \angle\,\theta_v - \theta_i$$

$$S = V_{rms} I_{rms} \cos(\theta_{v} - \theta_{i}) + j V_{rms} I_{rms} \sin(\theta_{v} - \theta_{i})$$

$$S = P + j Q$$

P: is the <u>average power in watts</u> delivered to a load and it is the only useful power.

Q: is the reactive power exchange between the source and the reactive part of the load. It is measured in VAR.

- Q = 0 for resistive loads (unity pf).
- Q < 0 for *capacitive loads* (leading pf).
- Q > 0 for *inductive loads* (lagging pf).

Power Absorbed: $P = I_{rms}^2 R = \frac{V_{rms}^2}{D}$

SEMESTER/SESSION

: II / 2013/2014

ELECTRICAL PRINCIPLES II

PROGRAMME

1 BND/BNF

COURSE CODE

BNR 10303

APPENDIX

$$\overline{\text{Conservation of AC Power}: \overline{S} = \frac{1}{2} \overline{V} \overline{I^*} = \frac{1}{2} \overline{V} (\overline{I_1^*} + \overline{I_2^*}) = \frac{1}{2} \overline{V} \overline{I_1^*} + \frac{1}{2} \overline{V} \overline{I_2^*} = \overline{S_1} + \overline{S_2}}$$

$$\begin{aligned} \textbf{Power Factor Correction}: \ C \ = \ \frac{Q_c}{\omega V_{rms}^2} \ = \ \frac{P \left(\tan \theta_1 - \tan \theta_2 \right)}{\omega \ V_{rms}^2} \end{aligned}$$

$$Q_{c} = Q_{1} - Q_{2}$$
, $Q_{1} = S_{1} \sin \Theta_{1} = P \tan \Theta_{1}$, $Q_{2} = P \tan \Theta_{2}$

Chapter 4

The voltages can be expressed in phasor form as

$$V_{qn} = 200 \angle 10^{\circ} V$$

$$V_{bn} = 200 \angle -230^{\circ}V$$

$$V_{cn} = 200 \angle -110^{\circ} V$$

A balanced Y-Y system

$$V_L = \sqrt{3}V_p$$
, where

$$V_p = \left| \mathbf{V}_{an} \right| = \left| \mathbf{V}_{bn} \right| = \left| \mathbf{V}_{cn} \right|$$

$$V_{L} = \left| \mathbf{V}_{ab} \right| = \left| \mathbf{V}_{bc} \right| = \left| \mathbf{V}_{ca} \right|$$

A balanced Y-Δ system

$$I_L = \sqrt{3}I_p$$
, where

$$I_{I} = |\mathbf{I}_{a}| = |\mathbf{I}_{b}| = |\mathbf{I}_{c}|$$

$$I_{p} = \left| \mathbf{I}_{AB} \right| = \left| \mathbf{I}_{BC} \right| = \left| \mathbf{I}_{CA} \right|$$

Power loss in a single-phase system:
$$P'_{loss} = 2R \frac{P_L^2}{V_L^2}$$

Power loss in a three-phase system:
$$P'_{loss} = R' \frac{P_L^2}{V_L^2}$$

Unbalanced Three-Phase Systems:

$$\mathbf{I}_a = \frac{\mathbf{V}_{AN}}{\mathbf{Z}_A}, \ \mathbf{I}_b = \frac{\mathbf{V}_{BN}}{\mathbf{Z}_B}, \mathbf{I}_c = \frac{\mathbf{V}_{CN}}{\mathbf{Z}_C},$$

$$I_n = -(I_a + I_b + I_c)$$

SEMESTER/SESSION COURSE NAME

: II / 2013/2014

ELECTRICAL PRINCIPLES II

PROGRAMME : 1 BND/BNF COURSE CODE :

BNR 10303

APPENDIX

Summary of phase and line voltages/currents for balanced three-phase system

Connection	Phase voltages/currents	Line voltages/currents
Y-Y	$V_{an} = V_p \angle 0^{\circ}$ $V_{bn} = V_p \angle -120^{\circ}$ $V_{cn} = V_p \angle +120^{\circ}$	$V_{ab} = \sqrt{3}V_p \angle 30^{\circ}$ $V_{bc} = V_{ab} \angle -120^{\circ}$ $V_{ca} = V_{ab} \angle +120^{\circ}$
	Same as line currents	$I_a = \frac{V_{an}}{Z_Y}$ $I_b = I_a \angle -120^{\circ}$ $I_c = I_a \angle +120^{\circ}$
Y-Δ	$V_{an} = V_p \angle 0^{\circ}$ $V_{bn} = V_p \angle -120^{\circ}$ $V_{cn} = V_p \angle +120^{\circ}$	$V_{ab} = V_{AB} = \sqrt{3}V_p \angle 30^{\circ}$ $V_{bc} = V_{BC} = V_{ab} \angle -120^{\circ}$ $V_{ca} = V_{CA} = V_{ab} \angle +120^{\circ}$
	$I_{AB} = \frac{V_{AB}}{Z_{\Delta}}$ $I_{BC} = \frac{V_{BC}}{Z_{\Delta}}$	$I_a = I_{AB}\sqrt{3}\angle -30^{\circ}$ $I_b = I_a\angle -120^{\circ}$ $I_c = I_a\angle +120^{\circ}$
	$I_{CA} = \frac{V_{CA}}{Z_{\Delta}}$	Garage values valtages
Δ-Δ	$V_{ab} = V_p \angle 0^{\circ}$ $V_{bc} = V_p \angle -120^{\circ}$ $V_{ca} = V_p \angle +120^{\circ}$ $I_{AB} = \frac{V_{ab}}{7}$	Same as phase voltages $I_a = I_{AB} \sqrt{3} \angle -30^{\circ}$
	$I_{BC} = rac{V_{bc}}{Z_{\Delta}}$ $I_{CA} = rac{V_{ca}}{Z_{\Delta}}$	$I_b = I_a \angle -120^{\circ}$ $I_c = I_a \angle +120^{\circ}$

SEMESTER/SESSION

II / 2013/2014

PROGRAMME

1 BND/BNF

COURSE NAME

: ELECTRICAL PRINCIPLES II

COURSE CODE

BNR 10303

APPENDIX

 Δ -Y

$$V_{ab} = V_p \angle 0^{\circ}$$

 $V_{bc} = V_p \angle -120^{\circ}$

 $V_{ca} = V_p \angle + 120^{\circ}$

Same as line currents

Same as phase voltages

$$I_a = \frac{V_p \angle - 30^{\circ}}{\sqrt{3}Z_Y}$$

 $I_b = I_a \angle -120^{\circ}$

 $I_c = I_a \angle + 120^{\circ}$

Chapter 5

The open-circuit mutual voltage across coil 2: $v_2 = M_{21} \frac{di_1}{dt}$

The open-circuit mutual voltage across coil 1: $v_1 = M_{12} \frac{di_2}{dt}$

SEMESTER/SESSION : II / 2013/2014

PROGRAMME

: 1 BND/BNF

COURSE NAME

ELECTRICAL PRINCIPLES II

COURSE CODE :

BNR 10303

APPENDIX

Series-Aiding Connection: $L = L_1 + L_2 + 2M$

Series-Opposing Connection $L = L_1 + L_2 - 2M$

Coefficient of Coupling k: $M = k\sqrt{L_1L_2}$

Instantaneous Energy Stored: $w = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm MI_1I_2$