

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I SESSION 2010/2011

| COURSE NAME      | : | CHEMISTRY                                                             |
|------------------|---|-----------------------------------------------------------------------|
| COURSE CODE      | : | DAS 12203/DSK 1913                                                    |
| PROGRAMME        | : | 1 DAA/DAC/DAI/DAM<br>2 DAA/DAC/ DAI/DAM                               |
| EXAMINATION DATE | • | NOVEMBER/DECEMBER 2010                                                |
| DURATION         | : | 2 <sup>1</sup> / <sub>2</sub> HOURS                                   |
| INSTRUCTION      | : | ANSWER ALL QUESTIONS IN<br>PART A AND FOUR (4)<br>QUESTIONS IN PART B |

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

## PART A

Q1 (a) Given the reaction between oxide ion  $(O^{2-})$  and water :

$$O^{2-}(aq) + H_2O(\ell) \longrightarrow OH^{-}(aq) + OH^{-}(aq)$$

Identify

(i) the Brønsted-Lowry acid and base

(ii) the conjugate acid-base pairs

(2 marks)

- (b) The pH of a window-cleaning solution is 8.28. Find the [H<sup>+</sup>] and [OH<sup>-</sup>].  $(K_w = 1.0 \times 10^{-14})$
- (c) What is the pH of a 0.015 M Ca(OH)<sub>2</sub> solution?

(5 marks)

(4 marks)

(d) Calculate the [H<sup>+</sup>], [OH<sup>-</sup>], [NH<sub>4</sub><sup>+</sup>] and pH of a 0.20 M aqueous ammonia, NH<sub>3</sub> solution.  $(K_b = 1.8 \times 10^{-5})$ 

(9 marks)

Q2 (a) Determine the oxidation number of the underlined element.

- (i)  $\underline{\mathbf{Mn}}\mathbf{O_4}^-$
- (ii)  $\underline{\mathbf{Mn}}_{2}O_{2}$ (iii)  $\underline{\mathbf{C}}_{2}O_{4}^{2}$

(3 marks)

(b) A voltaic cell is set up based on the following standard half-reactions.

 $\operatorname{Cd}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cd}(s), \quad E^{\circ}_{\operatorname{red}} = -0.403 \,\mathrm{V}$ Ag<sup>+</sup>(aq) + e<sup>-</sup>  $\rightarrow$  Ag(s),  $E^{\circ}_{\operatorname{red}} = 0.800 \,\mathrm{V}$ 

- (i) write the half-cell reactions at the anode and cathode as well as the cell diagram/notation
- (ii) find the standard cell potential,  $E_{cell.}^{o}$

(6 marks)

(c) For the following cell

 $Zn_{(s)}/Zn^{2+}_{(aq)}//Ni^{2+}_{(aq)}/Ni_{(s)}$  at 25°C.

- (i) Write the overall cell reaction.
- (ii) Calculate  $E_{cell}^{o}$  for the cell ( $E_{Zn^{2+}/Zn}^{o} = -0.763 \text{ V}, E_{Ni^{2+}/Ni}^{o} = -0.280 \text{ V}$ ).
- (iii) Calculate  $E_{cell}$  given  $[Zn^{2+}] = 0.90$  M and  $[Ni^{2+}] = 0.20$  M.

(7 marks)

(d) Calculate the mass of magnesium metal produced in 1 hour by the electrolysis of molten MgCl<sub>2</sub> if the current is 60.0 A.
 (Molar mass of Mg = 24.3, 1 Faraday = 96 500 C)

(4 marks)

## PART B

Q3 (a) According to the equation below :

 $Cr_2O_7^{2-}$  + 6 Fe<sup>2+</sup> + 14 H<sup>+</sup>  $\rightarrow$  2 Cr<sup>3+</sup> + 6 Fe<sup>3+</sup>

The oxidation of 25.0 mL of a solution containing  $Fe^{2+}$  requires 26.0 mL of 0.025*M* K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in acidic solution. Calculate the molar concentration of  $Fe^{2+}$ .

(4 marks)

(b) Compare quantitatively the rates of diffusion of methane,  $CH_4$  and ammonia,  $NH_3$ . (Relative atomic mass : C = 12, H = 1, N = 14)

(3 marks)

(c) A sample of KClO<sub>3</sub> is partially decomposed, producing O<sub>2</sub> gas that is collected over water. The volume of gas collected is 0.550 liter at 25°C and 657 torr total pressure. (Partial pressure of water, H<sub>2</sub>O at 25°C = 23.76 torr, R = 0.0821 L.atm/mol.K)

 $2 \operatorname{KClO}_3(s) \rightarrow 2 \operatorname{KCl}(s) + 3 \operatorname{O}_2(g)$ 

- (i) How many moles of  $O_2$  are collected?
- (ii) If the O<sub>2</sub> were dry, what volume would it occupy at the same temperature and pressure?

(8 marks)

- Q4 (a) A family of elements is characterized by an  $ns^2np^2$  electron configuration in the outermost shell.
  - (i) give the possible values of  $\ell$  and  $m_{\ell}$  for the s and p orbital
  - (ii) draw the orbital diagram for all electrons in  $ns^2np^2$
  - (iii) is the element diamagnetic or paramagnetic? Why?
  - (iv) identify the group of this family in the periodic table and state your reasons.

(7 marks)

(b) Arrange the following ions  $K^+$ ,  $Cl^-$ ,  $S^{2-}$  and  $Ca^{2+}$  in the order of decreasing ionic radii with suitable explanation. (Atomic number, Z: K = 19, Ca = 20, Cl = 17, S = 16)

(4 marks)

- (c) (i) What is the difference between ionization energy and electron affinity?
  - (ii) Write equations to represent each process in (i) using the element sodium, Na as example.

(4 marks)

Q5 (a) Use Lewis dot symbols to show the formation of aluminium oxide,  $Al_2O_3$ . (Atomic number, Z : Al = 13, O = 8)

(5 marks)

(b) Given 2 skeletal structures of formaldehyde, HCHO

- (i) Complete the Lewis structure.
- (ii) Calculate formal charges for all atoms in both structures.
- (iii) Which structure is more stable? Give suitable reasons. (Atomic number, Z: O = 8, H = 1, C = 4) (10 marks)

Q6 (a) 455 grams of water is heated from 75 °C to 200 °C. Calculate the amount of heat that has been absorbed by the water. Given the specific heat capacity of water is 4.18 J.g<sup>-1</sup> °C<sup>-1</sup>.

(3 marks)

(b) Calculate the standard entalphy of formation,  $\Delta H^{\circ}_{f}$ , for methanol, CH<sub>3</sub>OH.

CH<sub>3</sub>OH (ℓ) + 
$$\frac{3}{2}$$
 O<sub>2</sub> (g) → CO<sub>2</sub> (g) + 2H<sub>2</sub>O (g),  $\Delta H^{\circ}_{c}$  = -638.5 kJ  
 $\Delta H^{\circ}_{f}$  [CO<sub>2</sub> = -393.5 kJ mol<sup>-1</sup>, H<sub>2</sub>O = -241.8 kJ mol<sup>-1</sup>] (5 marks)

(c) Calculate the standard enthalpy change for the reaction

BrCl (g)  $\rightarrow$  Br (g) + Cl(g),  $\Delta H^{\circ}_{rxn} = ?$ 

Given the following data :

| $Br_2(\ell) \rightarrow Br_2(g)$            | $\Delta H^{\circ}_{rxn} = +30.91 \text{ kJ}$      |
|---------------------------------------------|---------------------------------------------------|
| $Br_2(g) \rightarrow 2Br(g)$                | $\Delta H^{\circ}_{rxn} = +192.90 \text{ kJ}$     |
| $Cl_2(g) \rightarrow 2Cl(g)$                | $\Delta H^{\circ}_{\rm rxn} = +243.40 \text{ kJ}$ |
| $Br_2(\ell) + Cl_2(g) \rightarrow 2BrCl(g)$ | $\Delta H^{\circ}_{rxn} = +29.20 \text{ kJ}$      |

(7 marks)

Q7 (a) For the following reaction at 1100 °C:

$$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$$

From the data collected, determine:

- (i) Rate law
- (ii) Rate constant, k.

| Experiment | [NO] M                 | [H <sub>2</sub> ] M | Reaction rate<br>(M/s) |
|------------|------------------------|---------------------|------------------------|
| 1          | 5.0 x 10 <sup>-3</sup> | 0.32                | 0.012                  |
| 2          | 1.0 x 10 <sup>-2</sup> | 0.32                | 0.024                  |
| 3          | $1.0 \times 10^{-2}$   | 0.64                | 0.096                  |

(10 marks)

(b) The decomposition of  $N_2O_5$  in solution in carbon tetrachloride is a first order reaction.

 $2 \ N_2O_5 \ \rightarrow \ 4 \ NO_2 \ + \ O_2$ 

The rate constant, k is  $5.25 \times 10^{-4} \text{ s}^{-1}$ . If the initial concentration of N<sub>2</sub>O<sub>5</sub> is 0.200 M, find the concentration after 10 minutes.

(5 marks)

Q8 (a) Write the equilibrium expression,  $K_c$  for the following equations:

| (i)   | $CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(\ell)$                                                    |           |
|-------|----------------------------------------------------------------------------------------------------------|-----------|
| (ii)  | $SnO_2(s) + 2 CO(g) \longrightarrow Sn(s) + 2 CO_2(g)$                                                   |           |
| (iii) | $3 \text{ Fe}(s) + 4 \text{ H}_2\text{O}(g) \longrightarrow \text{Fe}_3\text{O}_4(s) + 4 \text{ H}_2(g)$ |           |
|       |                                                                                                          | (3 marks) |

(b) Sulfur trioxide decomposes at a high temperature in a sealed container :

 $2 SO_3(g) - 2 SO_2(g) + O_2(g)$ 

Initially, the vessel is charged at 1000 K with SO<sub>3</sub>(g) at a partial pressure of 0.500 atm. At equilibrium, the SO<sub>3</sub> partial pressure is 0.200 atm. Calculate the partial pressures of SO<sub>2</sub> and O<sub>2</sub> at equilibrium and the value of  $K_{p.}$ .

(8 marks)

- (c) Predict the shift on the equilibrium position for the following reactions :
  - (i) Ammonia (g) is removed from the following reaction  $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$
  - (ii) Catalyst is added to reaction below  $CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3 H_2(g)$

. .

Ì

- (iii)  $CO_2(g)$  is added  $CaCO_3(s) + H_2O(\ell) + CO_2(g) \longrightarrow Ca(HCO_3)_2(aq)$
- (iv) Heat is added to the system  $2 NF_2(g) \longrightarrow N_2F_4(g), \Delta H^o = -38.5 kJ$ (4 marks)