CONFIDENTIAL

٠

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2010 / 2011

COURSE NAME	•	BASIC ELECTRIC AND ELECTRONICS
COURSE CODE	:	DKE 3273
PROGRAMME	:	3 DDT / DDM
EXAMINATION DATE	:	APRIL/MAY 2011
DURATION	:	3 HOUR
INSTRUCTION	:	ANSWER FIVE (5) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

DKE 3273

Q1 By referring to Figure Q1, show all the calculation to find the value for :

(a) Total resistance
$$R_T$$
 (4 marks)
(b) The voltage drop across resistance R_2 (V_{R2}), resistance R_3 (V_{R3}),
resistance R_4 (V_{R4}) and resistance R_6 (V_{R6}) (8 marks)
(c) The current flow through resistance R_2 (I_{R2}), resistance R_3 (I_{R3}),
resistance R_4 (I_{R4}) and resistance R_6 (I_{R6}) (8 marks)
(8 marks)

- Q2 (a) Determine the amount of charge, Q, stored by a capacitor if
 - (i) $C = 10\mu F$ and V = 5V

ţ

- (ii) C = 680 pF and V = 200 V
- (iii) $C = 0.22 \ \mu F$ and $V = 50 \ V$

(6 marks)

- (b) Determine the voltage, V, across a capacitor if
 - (i) $Q = 2.5 \ \mu C$ and $C = 0.01 \ \mu F$
 - (ii) $Q = 10 \text{ mC} \text{ and } C = 1000 \ \mu\text{F}$
 - (iii) Q = 188 nC and $C = 0.0047 \mu F$

(6 marks)

- (c) Calculate the capacitance, C, of a capacitor for each set of physical characteristics listed below :
 - (i) $A = 0.1 \text{ cm}^2$, d = 0.005 cm, $K\epsilon = 1$ (ii) $A = 1 \text{ cm}^2$, $d = 5 \times 10^{-6} \text{ cm}$, $K\epsilon = 6$ (8 marks)
- Q3 By referring to Figure Q3, assume a charging current of 2.4 mA flows for 1 ms, determine :
 - (a) Total equivalent capacitance, C_{EQ}

(4 marks)

- (b) The charge stored in each capacitor $C_1(Q_{C1})$, $C_2(Q_{C2})$ and $C_3(Q_{C3})$ (6 marks)
- (c) The voltage across each capacitor C_1 (V_{C1}), C_2 (V_{C2}) and C_3 (V_{C3}) (6 marks)
- (d) The total charge, Q_T stored by the equivalent capacitor, C_{EQ} (4 marks)

Q4 (a) Refer to Figure Q4(a), two coils connected in series have a self-inductance of $L_1 = 20$ mH and $L_2 = 60$ mH respectively. The total inductance of the combination was found to be $L_T = 100$ mH. Determine the amount of mutual inductance (L_T) that exists between the two coils assuming that they are aiding each other.

(10 marks)

(b) Refer to Figure Q4(b), calculate the equivalent inductance, L_{EQ} of the following inductive circuit, if given $L_1 = 20$ mH, $L_2 = 40$ mH, $L_3 = 30$ mH, $L_4 = 20$ mH, $L_5 = 50$ mH, $L_6 = 40$ mH and $L_7 = 100$ mH

(10 marks)

(4 marks)

(4 marks)

Q5 Refer to Figure Q5, calculate;

۰,

- (a) The secondary voltage, V_s (4 marks)
- (b) The secondary current, I_s
- (c) The secondary power, P_S
- (d) The primary power, P_P (4 marks)
- (e) The primary current, I_P (4 marks)

Q6 Refer to Figure Q6, determine;

(a)	The total equivalent resistance, REQ	
(h)	The branch currents L and L	(4 marks)
(0)		(4 marks)
(c)	The total current, I_T	(4 marks)
(d)	The power dissipated at each resistors, P_1 and P_2	(4 marks)
(e)	The total power supplied by the source, \mathbf{P}_{T}	(1 114183)
		(4 marks)

DKE 3273

,

.

٠.

Q 7	(a)	(a) Figure Q7(a) shows a transistor biasing circuit do the following :			
		(i)	Calculate the collector saturation current $(I_{C(sat)})$		
		(ii)	Calculate the collector-emitter cut-off voltage ($V_{CE (off)}$)	(1 mark)	
		(iii)	Calculate the collector current at the O-point (I_{CO})	(1 mark)	
		(iv)	Calculate the voltage at the O-point (V_{CFO})	(3 marks)	
		(v)	Draw the DC load line for the transistor circuit	(1 mark)	
				(4 marks)	
	(b)	Figure	e Q7(b) shows a n-channel JFET circuit. What is the value of R	s? (2 marks)	
				(-	

(c) Referring to Figure Q7(b), for the values of R_s calculated in question Q7(b), determine:

(i)	gate voltage (V _G)	
(ii)	source voltage (V_s)	(2 marks)
(••) 		(2 marks)
(111)	gate-source voltage (V_{GS})	(2 marks)
(iv)	drain voltage (V _D)	(2
		(2 marks)

ί.

References :

•

Band Color	Digit	Multiplier	Tolerance
Black	0	1	
Brown	1	10	±1%
Red	2	100	±2%
Orange	3	1,000	±3%
Yellow	4	10,000	±4%
Green	5	100,000	
Blue	6	1,000,000	
Violet	7	10,000,000	
Gray	8	100,000,000	
White	9		
Gold		0.1	±5%
Silver		0.01	±10%
None			±20%