UNIVERSITI TUN HUSSEIN ONN MALAYSIA # PEPERIKSAAN AKHIR SEMESTER II SESI 2008/2009 NAMA MATA PELAJARAN : REKABENTUK UNTUK PEMBUATAN & PEMASANGAN KOD MATA PELAJARAN : BDD 4013 KURSUS : 4BDD TARIKH PEPERIKSAAN : APRIL 2009 JANGKA MASA : 2 JAM 30 MINIT ARAHAN : JAWAB SEMUA SOALAN <u>DIBAHAGIAN A</u> DAN MANA MANA 3 SOALAN <u>DIBAHAGIAN</u> В. KERTAS SOALAN INI MENGANDUNGI TIGA BELAS (13) MUKA SURAT #### **SECTION A** S1 (a) Determine design efficiency for Pneumatic Piston in Figure S1 by filling Table 1 in page 7. Given that costing is RM15.00 per hour. Note: Please refer to DFA manual Handling & Insertion Chart/worksheet on page 12 and 13) (12 marks) (b) Based on initial design in **Figure S1**, you want to make some modification to improve the design, what part you want to eliminate or modify and why? (8 marks) S2 (a) Refer to design component in **Figure S2**, explain how to machine separate machines for milling, turning, drilling etc. to complete the final product. (Use some sketch to help your explanation) (8 marks) (b) Refer to design component in **Figure S2**, explain how to machine on a single turn/mill centre with counter spindle and dual turret to complete the final product. (Use some sketch to help your explanation) (8 marks) (c) Based on you explanation on (a) and (b), what is the advantages (b) approaches compare to (a). (4 marks) # **SECTION B** | S3 | Produc | et development process involved various individuals and lead by team leader. | |-----------|----------|---| | | (a) | What is Two (2) general types of products? | | | | (3 marks) | | | (b) | List five (5) individuals who design and develop product. | | | | (5 marks) | | | (c) | Marketing professional is one of the important people for developing products. | | | | Discuss the importance of these personnel in 'divergent thinking' phase when developing products. | | | | (6 marks) | | | (d) | A product will going through its life cycle; introduction, growth, maturity and | | | | decline as shown in Figure S3 . Discuss what happen to the product during the growth and maturity phase. | | | | (6 marks) | | S4 | Design | for Assembly (DFA) is a process by which products are designed with ease of | | | assemb | oly in mind. The reduction of the number of parts in an assembly has the added | | | benefit | of generally reducing the total cost of parts in the assembly. Fewer parts mean | | | faster a | and more accurate assembly, and fewer mistakes. | | | (a) | Describe the importance of DFA at the early stage of design process. | | | | (4 marks) | | | (b) | By minimizing parts count and level of assembly, justify how it could reduce the cost of assembly. | | | | (5 marks) | | (c) | During handling and assembly of parts, sometimes the process requires two | |-----|---| | | hands for manipulation. Explain in what circumstances need of two hand | | | manipulation? | | | (5 marks) | (d) Determine value for α and β based on Figure S4 (6 marks) S5 (a) What is Rib in injection molding operations and why rib is very important part in plastic product. (5 marks) - (b) Refer **Figure S5**, list all the major part in Injection Mould Component (4 marks) - (c) What is Draft angle and why so important in injection molding operations? Relate you answer with some sketching. (5 marks) (d) A batch of 15 cm diameter disks with a thickness of 4 mm, to be molded from ABS in a six-cavity mold. Determine the appropriate machine size in KN unit? (Given the % increase in area due to the runner is 15%, and the recommended injection pressure for ABS is 500 bars or 500 x 10⁵ N/m²) (6 marks) | S6 | (a) | What are the two (2) fundamental ways that the parts can be made from sheet metal? | |-----------|-----|---| | | | (4 marks) | | | (b) | With some sketching differentiate between these three operation of shearing the external profile of the part; i) cut-off | | | | ii) part-off iii) blanking | | | | (6 marks) | | | (c) | You have been given a job to buy a mechanical press machine. What are the considerations you should aware in order to select the machine? | | | | (6 marks) | | | (d) | What are the advantages of using cut-off die? (4 marks) | SEMESTER / SESI : SEM I / 2008/2009 KURSUS : 4BDD MATA PELAJARAN: DFMA KOD MATA PELAJARAN: BDD 4013 Pneumatic Piston Sub-assembly, dimension in mm # **FIGURE S1** TABLE 1 – Please include this table in your answer sheet | DESIGN FOR MANUAL ASSEMBLY - WORKSHEET | | | | | | | | | | | | |--|------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------|--|--| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | Part No | Operations | Handling
Code | Handling
Time | Insertion
Code | Insertion
Time | Operation
Time | Operation
Cost | Minimum
No Parts | Name of Assembly | ; | | ! | 1 | | | | | Design Efficiency = | | | | | | | | | | TM | CM | NM | Design Enterency | | | SEMESTER / SESI : SEM I / 2008/2009 KURSUS : 4BDD MATA PELAJARAN: DFMA KOD MATA PELAJARAN: BDD 4013 FIGURE S2 SEMESTER / SESI : SEM I / 2008/2009 KURSUS : 4BDD MATA PELAJARAN: DFMA KOD MATA PELAJARAN: BDD 4013 FIGURE S3 SEMESTER / SESI : SEM I / 2008/2009 MATA PELAJARAN : DFMA KURSUS : 4BDD KOD MATA PELAJARAN: BDD 4013 # **FIGURE S4** : 4BDD SEMESTER / SESI : SEM I / 2008/2009 2008/2009 KURSUS MATA PELAJARAN : DFMA KOD MATA PELAJARAN : BDD 4013 **FIGURE S5** SEMESTER / SESI : SEM I / 2008/2009 KURSUS : 4BDD MATA PELAJARAN: DFMA KOD MATA PELAJARAN: BDD 4013 # **BDI - DFA Manual Handling & Insertion Chart** | | | | | | MANU | AL HA | NDLIN | G — ES1 | IMATE | D TIMI | S (seco | nds) | | | | |---|--------------------|--|--------|-----|---|---|-----------------------------------|---------------|----------------------------------|---------------------------|---|---------------|---|--|--| | | | | | | parts | are easy | to grasp | and mani | pulate | part | s present | difficulti | difficulties (1) | | | | | | | | | thic | thickness > 2 mm thickness ≤ 2 mm | | | thic | kness > | thickness ≤ 2 m | | | | | | Key:
ONE HAND | | | | | size
>15 mm | 6 mm s
size
s 15 mm | size
<6 mm | size
>6 mm | size
\$6 mm | size
>15 mm | 6 mm s
size
s15 mm | size
<6 mm | size
>6 mm | size
≤6 mm | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | tools | (α· | +β) < 360° | | 0 | 1.13 | 1.43 | 1.88 | 1.69 | 2.18 | 1.84 | 2.17 | 2.65 | 2.45 | 2.98 | | | i na | - | (10, -1, 1, 2) | | 1 | 1.5 | 1.8 | 2.25 | 2.06 | 2.55 | 2.25 | 2.57 | 3.06 | 3 | 3.38 | | | oed and
ne hand
grasping | 36 | 0° ≤ (α+β)
< 540° | | 2 | 1.8 | 2.1 | 2.55 | 2.36 | 2.85 | 2.57 | 2.9 | 3.38 | 3.18 | 3.7 | | | parts can be grasped and
manipulated by one hand
without the aid of graspin | 540 | $540^{\circ} \le (\alpha + \beta)$ $< 720^{\circ}$ | | | 1.95 | 2.25 | 2.7 | 2.51 | 3 | 2.73 | 3,06 | 3.55 | 3.34 | 4 | | | parts can be gramanipulated by without the aid | <u> </u> | | // | | | parts need tweezers for grasping and manipulation | | | | | | | | | | | part
man
with | {α· | $+\beta$) = 720° | | | | in be ma
magnific | nipulated | without | | | | | | ping
tion | | | | | ONE H | | | parts a
to gras
manip | ire easy
sp and | parts p
handlii | | | re easy
p and | parts present handling difficulties (1) | | need standard
other than
rers | parts need special
tools for grasping
and manipulation | | | | with GRASPING AIDS | | | | | thickness
\$ 0.25mm | thickness | thickness | 1 | thickness | thickness | thickness | parts nee tools oth | parts r
tools t | | | λμο: | ١. | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | grasped and
by one hand but
of grasping tools | a ≤ 180° | | 4 | 3.6 | 6.85 | 4.35 | 7.6 | 5.6 | 8.35 | 6.35 | 8.6 | 7 | 7 | | | | | | | | 5 | 4 | 7.25 | 4.75 | 8 | 6 | 8.75 | 6.75 | 9 | 8 | 8 | | | | ٠ | 0 ≤ β
≤ 180° | | 6 | 4.8 | 8.05 | 5.55 | 8.8 | 6.8 | 9.55 | 7.55 | 9.8 | 8 | 9 | | | parts can be
manipulated
with the use | 9998 == | | \neg | 7 | 5.1 | 8.35 | 5.85 | 9.1 | 7.1 | 9.55 | 7.85 | 10.1 | 9 | 10 | | | parts
manip
with t | ø | $\beta = 360^{\circ}$ | | 1 | parts present no additional parts present additional h. | | | | | | | | | | | | | | | | | | <u>hano</u>
α≤180 | dling diffi | | : 360° | (e.g. | a ≤ 180° | | p <u>pery, et</u>
α = | c)(1)
360° | | | | | TWO HA | ANDS | | siże | 6 mm ≤
size | size | size | size | size | 6 mm ≾
size | size | size | SIZE | | | L_ | | MANIPUL | ATIO | , | > 15 mm | ≾ 15 mm | < 6 mm | > 6 mm | .≤ 6 mm | > 15 mm | ≤ 15 mm | < 6 mm | > 6 mm | ≤6 mm
9 | | | parts sev | | y nest or | | 8 | 4.1 | 4.5 | 5.1 | 5.6 | 6.75 | 5 | 5.25 | 5.85 | 6.35 | 7 | | | | be g | rasped and | - / | | | | | | | | | | | | | | (with the | use | of | | | pa | rts can b | e handled | d by one | person wi | ithout me | chanical | assistanc | e | for
ion | | | grasping
necessari | | | | | | parts do | not sever | ely nest | or tangle . | and are n | ot flexibl | e | nest or | tools | | | | | | | | | part weig | ht < 10 ll | | par | parts are heavy (> 10 lb) | | | | ecial
mani | | | TWO HANDS required for LARGE SIZE | | | | | parts are
grasp an
manipul | | parts pr
other ha
difficult | | parts are
grasp an
manipul | | parts pro
other hidifficult | andling | everel
or are
e (2) | eed sp | | | | | | | | Ĭ | | | | α≤180° | | | | parts severely r
tangle or are
flexible (2) | parts need special tools for
grasping and manipulation | | | | | quired for | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | grasping and transporting parts 9 | | | | | 2 | 3 | 2 | 3 | 3 | 4 | 4 | 5 | 7 | 9 | | #### BDD 4013 ## PEPERIKSAAN AKHIR SEMESTER / SESI : SEM I / 2008/2009 KURSUS : 4BDD MATA PELAJARAN: DFMA KOD MATA PELAJARAN: BDD 4013 # **BDI - DFA Manual Handling & Insertion Chart** ## MANUAL INSERTION—ESTIMATED TIMES (seconds) | | | | | | 1417414 | .07 | | 12511 | 1011 | DIIMA | | ,,,,, | | | | |--|--|--|-----------------------------------|--|--|---|---|-------------------------------------|--|---|---|---|---|---|--| | | | | | | ssembly
ntain ori
on (3) | | | | equired | holding down required during subsequent
processes to maintain orientation
or location (3) | | | | | | | | | easy to align and position during assembly (4) | | | | not easy to align or
position during
assembly | | | easy to align and position during assembly (4) | | | not easy to align or
position during
assembly | | | | | | Key: PART All bu | no
resistance
to
insertion | resistar
to
insertic | to | | tance
tion | resistance
to
insertion (5 | no
resistance
to
insertion | resistar
to
insertio | to | sistance | resistance
to
insertion (5) | | | | | | NOT SEC | | | 0 1 | | | | 2 | 3 | 6 | 7 | | 8 | 9 | | | Ĭ. | part and associated | | 0 | 1.5 | 2. | 5 | | 2.5 | 3.5 | 5.5 | 6. | 5 | 6.5 | 7.5 | | | addition of any part (1) where neither
the part itself nor any other part is
finally secured immediately | tool (including hands) can easily reach the desired location | | 1 | 4 | 5 | ****** | | 5 | 6 | 8 | 1 9 | | 9 | 10 | | | 1) wher
cother
diately | © ≦⊕ due to ob- | Y_{A} | 2 | 5.5 | 6. | 5 | | 6.5 | 7.5 | 9.5 | 10. | 5 | 10.5 | 11.5 | | | part (
or any | Structed access or restricted | // | | | | | | | | | | | | | | | of any
iself n | Vision (2) | // | - | no screwing
tion or | | | plas | itic defo | rmation imr | nediately af | ter insertic | on | | | | | lition of
part i | good by the structed access or restricted with the structed access or restricted with the structed access and restricted within (2). | | | deformation mediately a | on im-
after in- | im-
ler in- | | plastic bending
or torsion | | ng rivetti
opera | | ilar | immed | ightening
iately
isertion (6) | | | ad
ting | Stricted vision (2) | / | | sertion (snap/press
fits, circlips, spire
nuts, etc.) | | | | | y to align or | | | t easy to align or | | 1 | | | | | | | and
no
no
ign
or | | | | | n and
uring
(4) | position during assembly | | and
no
stance | 5 % p | | | | | PART SE
IMMED | | | align
ce to
n(4) | ion du
ly and
ce to
n (5) | to all | tion d | auce
su ce | (5) e to | easy to align and position during assembly (4) | ance
ion | ce to | to align a
ion with o | y to an ion an | | | | part and associated tool | N | | easy to align and position with no resistance to insertion (4) not easy to align | or position during
assembly and or
resistance to
insertion (5). | easy | Sod | no resistance
to insertion | resistance to
insertion (5) | easy
posi
ass | no resistance
to insertion | resistance to
insertion (5) | easy to align and position with no torsional resistance | not easy to align or position and/or torsional resistance (5) | | | re the | I (including hands) can | | | 0 | o ₹8.≒
1 | | 2 | 2 <u>2</u>
3 | 4 | 5 | 6
€2 | 7 | 8 | 9 | | | 1) where the | Tan be operated early | | 3 | 2 | 5 | | 4 | 5 | 6 | 7 | 8 | 9 | 6 | 8 | | | addition of any part (1) where the part itself and/or other parts are being finally secured immediately | unity post of the first | | 4 | 4.5 | 7.5 | 6 | .5 | 7.5 | 8.5 | 9,5 | 10.5 | 11.5 | 8.5 | 10.5 | | | n of an
elf and
inally s | obstructed access or restricted with party | | 5 | 6 | 9 | | 8 | 9 | 10 | 11 | 12 | 13 | 10 | 12 | | | dditio
art its | ្រុំដីនឹង obstructed
ទីនិង access and
ខុងទី restricted | | | | | 1 | | | | | | | | | | | * 3.0 | କ୍ରିକ୍ଟିକ୍ଟି
ଅଟିକ୍ଟିକ୍ଟି
ଆଧାରଣ (2) | | | (part(s) al | ready in | stening processes
in place but not
diately after insert | | not (part(s) a | | chanical fastening process
already in place but not
I immediately after inserti | | not | non-fastenin | | | | | | | none
plasti | | metal | | llurgical pro | cesses | | | etc.) | | | | | | | | 8 | (9) 8 | (§) (§) | | , (3) | additional
material
required | | ses | parts
(e.g.
or | ard(s) | | | | | | | SEPAR/ | LT E | | or
rocesse
rocess | | htenin | or other processes
snap fit, snap clip,
press fit, etc. | | equire
ance, | | a) | proces | etc.) manipulation of parts or sub-assembly (e.g. orienting, fitting or adjustment of parts). | other processes (e.g. liquid insertion, etc. | | | | OPERAT | bending or
similar processes | rivetting or
similar processes | ew tig | other | snap fit, snap clip,
press fit, etc. | no additional
material required
(e.g. resistance,
friction welding | soldering
processes | weld/braze
processes | chemical processes
(e.g. adhesive bonding, | manipulation of parts
or sub-assembly (e.g.
orienting, fitting or | er pro | | | | | | | \ | | | | | | | | | | | | | | | ١, | assembly processes
where all solid
parts are in place | \ | | 0 | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | and the in place | | 9 | 4 | 7 | | 5 | 3.5 | 7 | 8 | 12 | 12 | 9 | 12 | |