

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# PEPERIKSAAN AKHIR SEMESTER II SESI 2009/2010

NAMA MATA PELAJARAN : REKABENTUK UNTUK PEMBUATAN

DAN PEMASANGAN

KOD MATA PELAJARAN

: BDD 4013

KURSUS

: 4 BDP

TARIKH PEPERIKSAAN

: APRIL/MEI 2010

JANGKA MASA

: 2 JAM 30 MINIT

**ARAHAN** 

: BAHAGIAN A: JAWAB **SEMUA** SOALAN

DI ATAS KERTAS SOALAN INI.

BAHAGIAN B: JAWAB **TIGA (3) SOALAN SAHAJA** DARIPADA EMPAT (4) SOALAN YANG DIPERUNTUKKAN **DI ATAS BUKU** 

JAWAPAN YANG DISEDIAKAN.

KERTAS SOALAN INI MENGANDUNGI SEMBILAN (9) MUKASURAT BERCETAK

## BDD 4013

## PART A: Answer ALL questions for this part in this paper.

|    | ctors that influences the assembly costs for a product or subassembly?                                                                                                                                 | (6 mark                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| WI | hat are the characteristics of successful product development?                                                                                                                                         | (5 marks                   |
|    |                                                                                                                                                                                                        |                            |
| mi | the average assembly time (handling and insertion) for a part was us<br>inimum number of part is equal to 5 and the efficiency of manual assemb<br>07, calculate the total time to assemble that part. | ed with the design (3 mark |

| Refer to Figure 1 | , discuss the in | nportance of design phase.  | (5 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1               |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100               | Li               | fe-cycle cost committed     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80 1              |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · \               |                  | Costincurred                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8) 60<br>tr       | /                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Cost (%)    |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20/               |                  | Ease of chauge              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0/                |                  | THE THE THE THE THE THE THE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Concep            | tual Detailed    | Manufacturing Distribution, | ext Miller and Control of Control |
| Dosig             |                  | service, and<br>disposal    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Figure 1: Design stage vs total cost

| a rough-shaped workpiece for example turning, milling etc. Define the terms be |                         |
|--------------------------------------------------------------------------------|-------------------------|
| 9 1                                                                            | (6 marks)               |
| i) Cutting velocity, V:                                                        |                         |
| ii) Material removal rate, MRR:                                                |                         |
| iii) Machining time, t <sub>m</sub>                                            |                         |
|                                                                                | i) Cutting velocity, V: |

#### BDD 4013

| <b>Q</b> 7      |                         | nportant surfaces of the work p<br>) important surfaces of the work | iece in machining operation. Describe              |
|-----------------|-------------------------|---------------------------------------------------------------------|----------------------------------------------------|
|                 | i) Machined ourf        | 200                                                                 | (3 marks)                                          |
|                 | i) Machined surf        | ice –                                                               |                                                    |
|                 | ii) Transient surf      | ace –                                                               |                                                    |
|                 |                         |                                                                     |                                                    |
|                 |                         |                                                                     |                                                    |
| Q8              |                         | typical runner layouts in inject<br>sadvantage of these runner layo | tion molding. Explain briefly <b>ONE</b> (1) outs; |
|                 | S                       | <i>y</i>                                                            | (6 marks)                                          |
| 5555550 con con | es of runner<br>layouts | Advantage                                                           | Disadvantage                                       |
|                 |                         |                                                                     |                                                    |
|                 |                         |                                                                     |                                                    |

| Types:of runner layouts | Advantage | Disadvantage |
|-------------------------|-----------|--------------|
| i) Circular             |           |              |
| ii) Series              |           |              |
| iii) Symmetrical        |           |              |

#### PART B: Please answer THREE (3) questions ONLY for this part at answering book sheet.

- Q9 (a) Based on the Table 1 below, determine;
  - (i) The assembly cost if the worker's manual assembly rate is RM10 per hour.
  - (ii) The percentage of part reduction.
  - (iii) The effectiveness of assembly for the new design.

Table 1

| No. | Description                           | Old Design | New Design |  |
|-----|---------------------------------------|------------|------------|--|
| 1   | Quantity                              | 47         | 26         |  |
| 2   | Total assembly time                   | 6.37 min   | 2.58 min   |  |
| 3   | Number of minimum part in theoritical | 7          | 7          |  |

(6 marks)

(b) A product will go through its life cycle; introduction, growth, maturity and decline as shown in **Figure 2**. Discuss what happen to the product during the growth ,maturity and decline phase.

(14 marks)

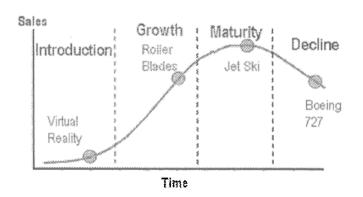



Figure 2: Product life cycle

Q10 (a) There are TWO (2) disadvantages if using blanking die in producing the parts in metal forming. State these disadvantages and explain briefly why it could be happen?

(6 marks)

(b) Figure 3 shows the rectangular shape of sheet metal with size 150mm x 90mm that surround with nine holes. The perimeter of each non-standard shape for hole "T" and hole "C" is 80mm and 96mm respectively. By assuming that 50mm space was allowed at surrounding area of part at the die set and the die manufacture rate is RM35 per hour. Determine the cost of piercing die for drilling these nine holes?

(14 marks)

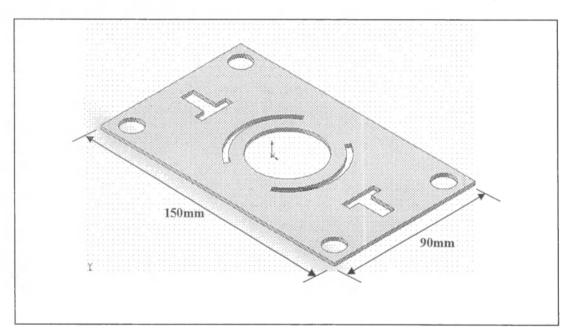



Figure 3

Q11 (a) Good injection molded part design relies on consistent wall thickness to minimize the potential for warped or distorted parts. By using appropriate figures, explain briefly how the warp and sink happen and how can you avoid it in part design?

(8 marks)

(b) A batch of 15 mm diameter disks with a thickness of 30 mm is to be molded from Acetal in a mold. The arrangement of the disk during molding is shown in Figure 4. Assume the percentage increase for the runner system is 50% and the clearance is 7.5 cm. By using Table 1 and 2 provided;

(12 marks)

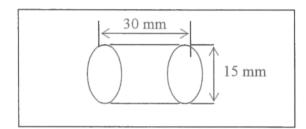



Figure 4

- (i) Determine the appropriate size of the plastic injection molding machine
- (ii) Determine the cycle time
- (iii) Determine the mold base cost
- (iv) Determine the optimum number of cavities if 50,000 of disks are needed. Assume  $k_1 = $25/hour$  and m = 0.7
- Q12 (a) Explain briefly FOUR (4) of the design guidelines in machining operation?
  (8 marks)
  - (b) A gun drilling operation is used to drill a 9/64 in. diameter hole to a certain depth. It takes 4.5 min to perform the drill operation using high pressure fluid delivery of coolant to the drill point. The cutting conditions include a spindle speed of 4000 rev/min at a feed of 0.0017 in/rev. In order to improve the surface finish in the hole, it has been decided to increase the speed by 20% and decrease the feed by 25%. How long will take to perform the operation at the new cutting conditions?

(12 marks)

#### BDD 4013

## Lampiran I

## PEPERIKSAAN AKHIR

SEMESTER/SESI

MATA PELAJARAN

: SEMESTER 2/2009/10 KURSUS : 4BDP : REKABENTUK UNTUK PEMBUATAN KOD MATA PELAJARAN: BDD 4013 DAN PEMASANGAN

Table 1 - Injection Molding Machine

| Clamping<br>force<br>(kft) | Sho)<br>5125<br>(60) | Operating<br>cost<br>(S/h) | Dry<br>cycse<br>fimes (s) | Maxi zum užamp<br>stroke<br>(um) | Driving<br>power<br>(kW) |
|----------------------------|----------------------|----------------------------|---------------------------|----------------------------------|--------------------------|
| 300:                       | 34                   | .28                        | 1.7                       | 20                               | 5.5                      |
| 500                        | 85                   | 30                         | 1.9                       | 23                               | 7.5                      |
| 880                        | 201                  | 33                         | 3.3                       | 32                               | 18.5                     |
| 1100                       | 286                  | 36                         | 3.9                       | 37                               | 22.0                     |
| 16881                      | 286                  | 41                         | 3.6                       | 42                               | 22.0                     |
| 5000                       | 2290                 | 74                         | 6.1                       | 70                               | \$3.0                    |
| 85480                      | 3636                 | 108                        | 8.6                       | 85                               | 90.0                     |

Table 2 – The Processes Data for Selected Polymer

| Themoplastic                              | Specific<br>gravity | Factorial diffusivity (mms <sup>2</sup> /s) | injectasi<br>temp.<br>(°C) | Maki<br>temp<br>("C) | Essection<br>semp.<br>(°C) | Injection<br>prossure<br>(fazz) |
|-------------------------------------------|---------------------|---------------------------------------------|----------------------------|----------------------|----------------------------|---------------------------------|
| High-density<br>polyethysene              | 0.95                | 0.11                                        | 232                        | 27                   | 52                         | 965                             |
| Fligh-impact<br>polystyrone               | 1.59                | 0.09                                        | 218                        | 27                   | 77                         | 963                             |
| Aczykostrale-<br>busądienejstyrone        | 1.05                | 0.13                                        | 260                        | 54                   | 82                         | 1000                            |
| (ABS)                                     |                     | 0.0                                         | 7 716                      | 93                   | 129                        | 1172                            |
| Accest (humanpolyanes)                    | 1.42                | (HAM)                                       | 216                        | 93                   | 129                        | 1172                            |
| Polyamide<br>(6/6 nylna)                  | 1.13                | 0.10                                        | 291                        | 91                   | 129                        | 1103                            |
| Polycorbonote                             | 1.20                | 0.13                                        | 302                        | 91                   | 127                        | 1372                            |
| Polycarbonate (<br>(30% glass)            | 1.43                | (k.13                                       | 329                        | 102                  | 141                        | 1310                            |
| Modified<br>polyphenylene<br>oxide (PPO)  | 1306                | Ø.12                                        | 232                        | 82                   | 14)2                       | 1034                            |
| Modified PPO<br>(30% glass)               | 1.27                | 0,14                                        | 232                        | 91                   | 121                        | 1034                            |
| Polypropylene<br>(40% into)               | 1.22                | o.ox                                        | 218                        | 38                   | 88                         | 965                             |
| Polyester<br>sgruphshajute<br>(30% glass) | 1.56                | 78.0                                        | 293                        | 104                  | 143                        | 1172                            |

## PEPERIKSAAN AKHIR

SEMESTER/SESI MATA PELAJARAN

: SEMESTER 2/2009/10

KURSUS

: REKABENTUK UNTUK PEMBUATAN KOD MATA PELAJARAN: BDD 4013

List of Formula

$$EM = \frac{3 \times NM}{TM}$$

$$C_{ds} = 120 + 0.36A_{u}$$

$$t_m = \frac{d_m}{2fn_w}$$

$$X_p = \frac{P^2}{LW}$$

$$v_{\max} = \pi n_{w} d_{m}$$

$$M_p = M_{po} f_{lw} f_d$$

$$Z_{m_{\max}} = \pi f a_p n_w d_m$$

Total Die Cost = 
$$C_{ds} + (M_{po} + M_{pc} + M_{ps})R$$

$$F (kN) = A (m^2) \times P_{max} (kN/m^2)$$
  
 $M_{pc} = 8 + 0.6 P + 3 N_p$ 

$$M_{po}=23+0.03LW$$

$$t_f = \frac{V}{Q_{av}} = \frac{2V_s p_j}{P_j}$$

$$M_{ps} = KN_p + 0.4 N_a$$

$$t_f = \frac{1}{Q_{av}} = \frac{1}{P_j}$$

$$n = \left(\frac{N_t k_1 t}{(mC_{c1})}\right)^{\frac{1}{2}(m+1)}$$

$$t_c = \frac{h^2_{\text{max}}}{\pi^2 \alpha} \log_e \frac{4(T_i - T_m)}{\pi (T_x - T_m)} x C$$
  $t_r = 1 + 1.75 t_d \left[ \frac{2D + 5}{L_s} \right]^{\frac{1}{2}}$ 

$$t_r = 1 + 1.75t_{\vec{s}} \left[ \frac{2D + 5}{L_s} \right]^{\frac{1}{2}}$$

$$t_{close} = 0.5t_{s} \left[ \frac{2D+5}{L_{s}} \right]^{\frac{1}{2}}$$

$$C_b = 1000 + 0.45 A_c h_p^{0.4}$$

$$t_f = \frac{V}{Q_{av}} = \frac{2V_s p_j}{P_i}$$

$$t_{close} = 0.5t_d \left[ \frac{2D+5}{L_s} \right]^{\frac{1}{2}}$$