

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2011/2012

COURSE NAME

CIRCUIT THEORY

COURSE CODE

: DAE 11103

PROGRAMME

: 1 DAE

EXAMINATION DATE

: MARCH 2012

DURATION

: 3 HOURS

INSTRUCTIONS

: PART A

ANSWER ALL QUESTIONS

PART B

ANSWER THREE (3)
QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF FOURTEEN (14) PAGES

CONFIDENTIAL

PART A: 40 Marks (MULTIPLE CHOICE QUESTIONS)

- Q1 The prefix *micro* stands for:
 - (a) 10^6
 - (b) 10^3
 - (c) 10^{-3}
 - (d) 10⁻⁶
- Q2 A charge of 2 Coulomb flowing past a given point each second is a current of 2 A.
 - (a) True
 - (b) False
- Q3 The current I in the circuit of Figure Q3 is:
 - (a) -0.8 A
 - (b) -0.2 A
 - (c) 0.2 A
 - (d) 0.8 A
- **Q4** Which of the circuits in Figure Q4 will give you $V_{ab} = 7 \text{ V}$?
- Q5 At node 1 in the circuit of Figure Q5, applying KCL gives:
 - (a) $2 + \frac{12 v_1}{3} = \frac{v_1}{6} + \frac{v_1 v_2}{4}$
 - (b) $2 + \frac{v_1 12}{3} = \frac{v_1}{6} + \frac{v_2 v_1}{4}$
 - (c) $2 + \frac{12 v_1}{3} = \frac{0 v_1}{6} + \frac{v_1 v_2}{4}$
 - (d) $2 + \frac{v_1 12}{3} = \frac{0 v_1}{6} + \frac{v_2 v_1}{4}$
- Q6 In the circuit of Figure Q6, the voltage v_2 is:
 - (a) -8 V
 - (b) -1.6 V
 - (c) 1.6 V
 - (d) 8 V

Q' The hoop equation for the cheant in Figure Q' is	Q7	The loop equation	for the circuit	in Figure Q7 is
---	-----------	-------------------	-----------------	-----------------

- (a) -10+4i+6+2i=0
- (b) 10 + 4i + 6 + 2i = 0
- (c) 10+4i-6+2i=0
- (d) -10+4i-6+2i=0

Q8 Refer to Figure Q8. The Thevenin resistance at terminals a and b is:

- (a) 25Ω
- (b) 20Ω
- (c) 5Ω
- (d) 4Ω

Q9 Which pair of circuits in Figure Q9 are equivalent?

- (a) a and b
- (b) b and d
- (c) a and c
- (d) c and d

Q10 A load is connected to a network. At the terminals to which the load is connected,
$$R_{\text{Th}} = 10 \Omega$$
 and $V_{\text{Th}} = 40 \text{ V}$. The maximum possible power supplied to the load is:

- (a) 160 W
- (b) 80 W
- (c) 40 W
- (d) 1 W

Q11 What charge is on a 5 μ F capacitor when it is connected across a 120 V source?

- (a) $600 \mu C$
- (b) $300 \, \mu C$
- (c) 24 MC
- (d) 36 mC

- (a) 3.8 mF
- (b) 5 mF
- (c) 24 mF
- (d) 44 mF

Q13	If the current through a 10 mH inductor increases from zero to 2 A, how much energy
	is stored in the inductor?

- (a) 40 mJ
- (b) 20 mJ
- (c) 10 mJ
- (d) 5 mJ

Q14 An RC circuit has $R = 2 \Omega$ and C = 4 F. The time constant is:

- (a) 0.5 s
- (b) 2 s
- (c) 4 s
- (d) 8 s
- (e) 15 s

Q15 In the circuit of Figure Q15, the capacitor voltage just before t = 0 is:

- (a) 10 V
- (b) 7 V
- (c) 6 V
- (d) 4 V
- (e) 0 V

Q16 If
$$v_1 = 30\sin(\omega t + 10^\circ)$$
 and $v_2 = 20\sin(\omega t + 50^\circ)$, which of these statements are true?

- (a) v_1 leads v_2
- (b) v_2 leads v_1
- (c) v_2 lags v_1
- (d) v_1 lags v_2
- (e) v_1 and v_2 are in phase

Q17 A series *RLC* circuit has
$$R = 30 \Omega$$
, $X_C = 50 \Omega$, and $X_L = 90 \Omega$. The impedance of the circuit is:

- (a) $30 + j140\Omega$
- (b) $30 + j40\Omega$
- (c) $30 j40\Omega$
- (d) $-30-j40\Omega$
- (e) $-30 + j40\Omega$

Q18 T	he voltage	\mathbf{V}_{o} across t	the capacitor	in	Figure	Q18 is:
-------	------------	------------------------------------	---------------	----	--------	---------

- (a) 5∠0° V
- (b) $7.071 \angle 45^{\circ} V$
- (c) $7.071 \angle -45^{\circ} V$
- (d) $5\angle -45^{\circ}V$

Q19 A quantity that contains all the power information in a given load is the

- (a) power factor
- (b) apparent power
- (c) average power
- (d) reactive power
- (e) complex power

Q20 In the power triangle shown in Figure Q20, the reactive power is:

- (a) 1000 VAR leading
- (b) 1000 VAR lagging
- (c) 866 VAR leading
- (d) 866 VAR lagging

PART B: 60 Marks

- Q21 (a) (i) Find the value of R_L for maximum power transfer in the circuit of Figure Q21(a).
 - (ii) Find the maximum power.

(12 marks)

(b) Use superposition principal to find v in Figure Q21(b).

(8 marks)

Q22 (a) Find the equivalent capacitance between terminals x and y for Figure Q22(a).

(5 marks)

- (b) The circuit shown in Figure Q22(b) is at steady state condition, determine:
 - (i) The voltage, v and current, i
 - (ii) The energy stored in the capacitor.

(10 marks)

(c) The voltage across a 200 mH inductor is given by

$$v(t) = 3t^2 + 2t + 4$$
 V for $t > 0$

Determine the current i(t) through the inductor. Assume that i(0) = 1A.

(5 marks)

- Q23 (a) Switch S_1 in Figure Q23(a) has been closed for a long time. At t = 0 s, S_1 is opened at the same instant that S_2 is closed to avoid an interruption in current through the coil.
 - (i) Find the initial current through the coil, $i_{L(0)}$.
 - (ii) Find the mathematical expression for the current i_L following the closing of switch S_2 .

(10 marks)

If the switch in Figure Q23(b) opens at t = 0 s,

(b)

		(i) (ii)	Find the capacitor voltage $v(t)$ for $t \ge 0$. Calculate the initial energy stored in the capacitor $w_c(0)$.	
				(10 marks)
Q24 ((a)		lements are connected in series as shown in Figure Q24(a). = $12\cos(2t - 30^{\circ})$ A. Find the element values.	
				(6 marks)
	(b)	Calcul	ate $i(t)$ in the circuit of Figure Q24(b).	
				(8 marks)
	(c)	(i) (ii)	Express $v = 8 \cos (7t + 15^\circ)$ in sine form. Convert $i = -10 \sin (3t - 85^\circ)$ to cosine form.	
				(3 marks)
	(d)		$v_1 = 20 \sin (\omega t + 60^\circ)$ and $v_2 = 60 \cos (\omega t - 10^\circ)$, determine between the two sinusoids and which one lags the other.	the phase
				(3 marks)
Q25	Refer	ring to t	he entire circuit in Figure Q25, calculate :	
	(a)	total l	oad impedance, Z _T	(6 marks)
	(b)	power	factor (state whether it is leading or lagging)	(2 marks)
	(c)	compl	lex power	(3 marks)
	(d)	appare	ent power	(3 marks)
	(e)	averaş	ge power (real power) delivered by the source	(3 marks)
	(f)	reactiv	ve power	(3 marks)

SEMESTER / SESSION : SEMESTER II/ 2011/2012

COURSE : CIRCUIT THEORY

PROGRAMME :

1 DAE

COURSE CODE :

DAE 11103

FIGURE Q3

SEMESTER / SESSION : SEMESTER II/ 2011/2012

COURSE : CIRCUIT THEORY

PROGRAMME: 1 DAE

COURSE CODE : DAE 11103

FIGURE Q5

FIGURE Q7

SEMESTER / SESSION : SEMESTER II/ 2011/2012

PROGRAMME :

1 DAE

COURSE : CIRCUIT THEORY

COURSE CODE :

DAE 11103

FIGURE 09

SEMESTER / SESSION : SEMESTER II/ 2011/2012

COURSE : CIRCUIT THEORY

PROGRAMME : 1 DAE

COURSE CODE : DAE 11103

FIGURE Q15

FIGURE Q20

SEMESTER / SESSION : SEMESTER II/ 2011/2012

PROGRAMME: 1 DAE

COURSE : CIRCUIT THEORY

COURSE CODE : DAE 11103

FIGURE Q21(a)

FIGURE Q21(b)

FIGURE Q22(a)

SEMESTER / SESSION : SEMESTER II/ 2011/2012

COURSE : CIRCUIT THEORY

PROGRAMME : 1 DAE

COURSE CODE : DAE 11103

FIGURE Q22(b)

FIGURE Q23(a)

FIGURE Q23(b)

SEMESTER / SESSION : SEMESTER II/ 2011/2012

PROGRAMME : 1 DAE

COURSE: CIRCUIT THEORY

COURSE CODE :

DAE 11103

FIGURE Q24(a)

FIGURE Q24(b)

FIGURE Q25