SULIT

;,

÷

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

PEPERIKSAAN AKHIR SEMESTER II SESI 2010/2011

NAMA KURSUS	:	MEKANIK BENDALIR II
KOD KURSUS	:	BDA 3023
PROGRAM	:	3 BDD
TARIKH PEPERIKSAAN	:	APRIL / MEI 2011
JANGKA MASA	:	3 JAM
ARAHAN	:	JAWAB EMPAT (4) SOALAN Daripada Lima (5)

SOALAN.

KERTAS PEPERIKSAAN INI MENGANDUNGI LIMA (5) MUKASURAT

SULIT

BDA	3023
-----	------

C)1 a))	Describe with the aid of diagrams the following terms for pipe flow:
~			

÷ 4

- i). entrance length for a fully developed laminar flow;
- ii) entrance length for a fully developed turbulent flow; and
- iii) shear stress for viscous flow in pipe.

[9 marks]

- b) As shown in Figure Q1(b), the velocity profile for laminar flow in a pipe is quite different from that for turbulent flow. The velocity profile for laminar flow is parabolic; while the velocity profile for turbulent flow can be approximated by the power-law profile.
 - For laminar flow, determine at what radial location you would place a
 Pitot Tube if it is to measure the average velocity in the pipe.
 - ii) Repeat part b(i) for turbulent flow with Re = 10,000.

[16 marks]

Q2 a) Give the definition of 'potential flow' and derive its governing equation.

(9 marks)

- b) Consider the flow field given by $\mathbf{V} = xy^2 \mathbf{i} (1/3)\mathbf{y}^3 \mathbf{j}$.
 - i) Show that the velocity field represents a possible incompressible flow.
 - ii) Determine the acceleration at point (x,y) = (1,2).
 - iii) Determine the expression for the stream function, ψ .

(16 marks)

Q3 a) Explain the boundary layer characteristics of uniform upstream flow pasts through a fixed plat plate and it's transitional from laminar to turbulence.
 Provide an appropriate sketch.

(10 marks)

- b) A cyclist is able to attain a maximum speed of 30 km/hr on a calm day. The total mass of rider and bike is 65 kg. The rolling resistance of the tires is F_R=7.5N, and the drag coefficient and frontal area are C_D=1.2 and A=0.25m². The cyclist bets that:
 - i. she can maintain a speed of 24 km/hr even though there is a headwind (wind moving in opposing direction to the cycling) of 10 km/hr.
 - ii. she can attain a top speed of 40 km/hr while cycling with wind support. Which, if any, bets does she win? Take air density, $\rho=1.23$ kg/m³.

(15 marks)

Q4 a) Describe compresible flow through a convergent-divergent nozzle. How and where does the shock wave occur in the nozzle ?

(10 marks)

- b) An ideal gas flows isentropically through a converging-diverging nozzle. At a section in the converging portion of the nozzle; area, $A_1 = 0.1 \text{ m}^2$; pressure $p_1 = 600 \text{ kpa}$ (abs); temperature, $T_1 = 20^{\circ} \text{ C}$, and Mach number, $M_{a1} = 0.6$. For section (2) in the diverging part of the nozzle, determine A_2 , p_2 , and T_2 if $M_{a2} = 3.0$ and the gas is :
 - i) air; and

÷.,

ii) helium.

Physical properties :

Air ; $\rho = 1.23 \text{ kg/m}^3$; $\mu = 1.79 \text{ x } 10^{-5} \text{ Ns/m}^2$; $R = 2.869 \text{ x} 10^2 \text{ J/kgK}$ and k = 1.40Helium ; $\rho = 0.166 \text{ kg/m}^3$; $\mu = 1.94 \text{ x } 10^{-5} \text{ Ns/m}^2$; $R = 2.077 \text{ x} 10^3 \text{ J/kgK}$ and k = 1.66

(15 marks)

BDA 3023

Q5 a) Explain briefly the following efficiencies of a centrifugal pump :

i) manometric efficiency;

• •

÷

- ii) volumetric efficiency;
- iii) mechanical efficiency; and
- iv) overall efficiency.

(10 marks)

- b) A centifugal pump impeller whose external diameter and width at the outlet are 0.80 m and 0.10 m respectively is running at 550 rpm. The angle of impeller vanes at outlet is 40°. The pump delivers 0.98 m³ of water per second under effective head of 35 m. If the pump is driven by a 500 kW motor, determine ;
 - i) the manometric efficiency;
 - ii) the overall efficiency;
 - iii) the mechanical efficiency.

Assume water enters the vanes radially at inlet.

(15 marks)

۰.

. **•**~

