



## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

## FINAL EXAMINATION SEMESTER I SESSION 2011/2012

| COURSE NAME      | : | COMPUTER PROGRAMMING                                                                   |
|------------------|---|----------------------------------------------------------------------------------------|
| COURSE CODE      | : | BDU 10103                                                                              |
| PROGRAM          | : | BDC AND BDM                                                                            |
| EXAMINATION DATE | : | JANUARY 2012                                                                           |
| DURATION         | : | 3 JAM                                                                                  |
| INSTRUCTION      | : | ANSWER THREE QUATIONS OF PART<br>A AND ONE (1) OUT OF TWO (2)<br>QUESTIONS FOR PART B. |
|                  |   |                                                                                        |

THIS PAPER CONTAINS FIVE (5) PRINTED PAGES

## PART A: Answer all three problems.

- Q1 a. Computer can be classified according to their size and power or their function. Explain briefly four type of computer defined according to their size and power?.
  - b. What is the differences between computer memory and computer data storage.
  - c. What is difference between static RAM and dynamic RAM.

(20 Marks)

Q2 Write in the form of FORTRAN expression for the following mathematical equations as given belows :

a. 
$$y = \frac{x-4}{x^2+1} + \frac{2}{5}x$$
  
b.  $y_i = \frac{\frac{2}{3}x_i^2 + 4x_i + 1}{|x_i - 1|}$   
c.  $y = 3\sin^2 x + 4\cos x^3 + tg(2x)$   
d.  $y = \ln(2x^2 + 4x + 1) + x^2$   
e.  $y = \begin{cases} x^2 + 4x + 3 & -3 \le x < 1 \\ \log_{10}(x+1) & 1 \le x < 4 \\ \frac{1}{\sqrt{x^3+1}} & 4 \le x \le 10 \end{cases}$ 

(20 Marks)

Q3 Given a function sin (x) in the form of Maclaurin series as :

$$y = \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots - \dots + \frac{x^{N-1}}{(N-1)!} - \frac{x^N}{N!}$$
 x in radian.  
N! = 1 x 2 x 3 x ... x (N-1) x N

Here one has to develop a computer code which allow to obtain the value y for any given value of Maclaurin order N as well as the of independent variable x which given in degree. The computer code will produce result which appears on the monitor screen as follows:

5-blank-Maclaurin Series of sin(x)
5-blank-Maclaurin order N = .....
5-blank- Given x value (deg) = .....
5-blank- Result Maclaurin series y = ....
5-blank- Computer result y\_c = ....
5-blank- Percentage difference (y-y c)/y\_c (%) = .....

The format output for any Integer variable will be assigned with 15 while for real variable with F10.4.

Write the flow chart and computer code

(20 Marks)

## Part B: Select one out of two questions

•

Q4. If one has to carry out interpolation over an array of data set. One can use a Lagrange Interpolation method. This method can be written mathematically as:

$$\mathbf{y}(\mathbf{x}) = \mathbf{y}_1 + \frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{x}_2 - \mathbf{x}_1} (\mathbf{y}_2 - \mathbf{y}_1) \text{ for } \mathbf{x}_1 < \mathbf{x} < \mathbf{x}_2$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{y}_{N-1} + \frac{\mathbf{x} - \mathbf{x}_{N-1}}{\mathbf{x}_N - \mathbf{x}_{N-1}} (\mathbf{y}_N - \mathbf{y}_{N-1}) \text{ for } \mathbf{x}_{N-1} < \mathbf{x} < \mathbf{x}_N$$

$$\begin{split} \mathbf{y}(\mathbf{x}) &= \frac{(\mathbf{x} - \mathbf{x}_{i})(\mathbf{x} - \mathbf{x}_{i+1})}{(\mathbf{x}_{i} - \mathbf{x}_{i-1})(\mathbf{x}_{i+1} - \mathbf{x}_{i-1})} \mathbf{y}_{i-1} + \frac{(\mathbf{x} - \mathbf{x}_{i-1})(\mathbf{x} - \mathbf{x}_{i+1})}{(\mathbf{x}_{i-1} - \mathbf{x}_{i})(\mathbf{x}_{i+1} - \mathbf{x}_{i})} \mathbf{y}_{i} + \\ &+ \frac{(\mathbf{x} - \mathbf{x}_{i-1})(\mathbf{x} - \mathbf{x}_{i})}{(\mathbf{x}_{i-1} - \mathbf{x}_{i+1})(\mathbf{x}_{i} - \mathbf{x}_{i+1})} \mathbf{y}_{i+1} \quad \text{for } \mathbf{x}_{i-1} < \mathbf{x} < \mathbf{x}_{i}, \\ &\mathbf{i} = 2, 3, 4, \dots, N-1 \end{split}$$

Suppose in file : XYDATA.dat, one has an array data which consists of 41 pair of  $(X, Y_1(X))$  and  $(X, Y_2(X))$  as given in the Table Q4.

| 41<br>******** | *****  | ******  |  |  |
|----------------|--------|---------|--|--|
| XDT            | YDT1   | YDT2    |  |  |
| ********       |        |         |  |  |
| 0.0            | 3.2421 | 1.2423  |  |  |
| 0.25           | 1.2571 | 2.1111  |  |  |
| 0.50           | 2.4671 | 6.7184  |  |  |
| 0.75           | 1.4271 | 8.7185  |  |  |
| 1.00           | 5.7672 | 9.7174  |  |  |
| 1.25           | 8.4674 | 11.7189 |  |  |

|       | <u>B</u> DU 10103_ |                 |  |
|-------|--------------------|-----------------|--|
| 1.50  | 1.4691             | 12.6185         |  |
|       |                    |                 |  |
|       |                    |                 |  |
| 5.00  | 11.4271            | 28.3187         |  |
| 5.25  | 15.7672            | 39.2174         |  |
| 5.50  | 18.4674            | 21.4189         |  |
| 5.75  | 21.4691            | 18.5186         |  |
|       |                    |                 |  |
|       |                    |                 |  |
| 9.00  | 41.4271            | 38.3127         |  |
| 9.25  | 31.4271            | 28.2287         |  |
| 9.50  | 25.7672            | <b>29.257</b> 1 |  |
| 9.75  | 18.4674            | 24.4189         |  |
| 10.00 | 11.4691            | 12.5187         |  |
|       |                    |                 |  |

TABLE Q4 : DATA X,Y1 and Y2

The features of the developed computer will be

• •

- (i) Read data file through key in its file name.
- (ii) User key in for any value of x
- (i) The computer code will call SUBROUTINE INTERPOL twice, as follows: call this subroutine as :
  - CALL INTERPOL (XDT, YDT1, NP, X, Y1) and then
  - CALL INTERPOL (XDT, YDT2, NP, X, Y2)
- (ii) The result will be presented in the screen of monitor in the form :
  - 5 blank : At given XP = ------
  - 5 blank Interpolated value Y1 = -----
  - 5 blank Interpolated value Y2 = -----

Write the flow chart and computer code for this problem

(40 marks)

**S5** Given an ordinary differential equation as:

..

$$\frac{dy}{dx} = f(x,y) = x^2y + 4x + 5e^{-0.1x} + 3.0$$

Initial condition is given as:

$$\mathbf{x} = \mathbf{x}_0 \qquad \mathbf{y} = \mathbf{y}_0$$

The numerical method for solving ordinary differential equation may one uses the Fourth order Runge Kutta method defined as:

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \frac{d\mathbf{x}}{6} (\mathbf{m}_1 + 2\mathbf{m}_2 + 2\mathbf{m}_3 + \mathbf{m}_4), \quad i = 0, 1, 2, ..., N$$

Where :

• • • •

$$\mathbf{m}_{1} = \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i})$$
$$\mathbf{m}_{2} = \mathbf{f}\left(\mathbf{x}_{i} + \frac{\mathbf{d}\mathbf{x}}{2}, \mathbf{y}_{i} + \mathbf{m}_{1}\frac{\mathbf{d}\mathbf{x}}{2}\right)$$
$$\mathbf{m}_{3} = \mathbf{f}\left(\mathbf{x}_{i} + \frac{\mathbf{d}\mathbf{x}}{2}, \mathbf{y}_{i} + \mathbf{m}_{2}\frac{\mathbf{d}\mathbf{x}}{2}\right)$$
$$\mathbf{m}_{4} = \mathbf{f}\left(\mathbf{x}_{i} + \mathbf{d}\mathbf{x}, \mathbf{y}_{i} + \mathbf{m}_{3} \mathbf{d}\mathbf{x}\right)$$

The feature of computer code :

- The initial value  $x_0$  and  $y_0$  are given through key in
- The value of  $x_N$  and step number N are key in
- The function of f(x,y) is placed as sub function
- The computer code will produce the result which is appearing on screen and also save in File. File name for output is is key in by the user.
- The result will looks like as bellow:
  - 5-blank- Fourth Order Runge Kutta Method
  - 5-blank- Initial value :  $X0 = \dots Y0 = \dots$
  - 5-blank Interval step  $dx = \dots$

| 5-blank- No  | x-pos    | У      |    |
|--------------|----------|--------|----|
| 5-blank-**** | *****    | ****** | ** |
| 1            | 0.5000   | 2.4122 |    |
| 2            | 0.6000   | 2.9123 |    |
|              |          | •••••  |    |
|              | •••••••• | •••••  |    |
| N            | F9.4     | F9.4   |    |

\*\*\*\*\*\*

Write the flow chart and computer code.

(40 marks)