CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2011/2012

NAME OF COURSE	:	CONTROL SYSTEM DESIGN
COURSE CODE	:	BDA 4023
PROGRAM	:	BACHELOR OF MECHANICAL ENGINEERING WITH HONOURS
DATE OF EXAMINATION	:	JUNE 2012
DURATION	•	2 HOURS 30 MINUTES
INSTRUCTION	:	ANSWER ANY FOUR (4) QUESTIONS

THIS PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

- Q1 a) Briefly explain the purpose of representing state space vector in dynamic systems. (5 marks)
 - b) Figure Q1 shows a spring-mass-damper system where k_1 and k_2 are the spring coefficients, and c_1 is a damping coefficient of the system. The system is given with u_i an external force acting on system; m_1 and m_2 are mass of carts, and p and q are position of carts.
 - i) Derive all equations related to this system.
 - ii) Draw the block diagram related to part (i).
 - ii) From equations derived in part i), determine the matrix A and matrix B using state space methods. Obtain the transfer function of the system.

(20 marks)

Q2 Consider the control system shown in Figure Q2. The open loop transfer function of a system is given as, $G(s) = \frac{1}{s(s+2)(s+5)}$

Assume the compensator, $G_c(s)$ is a simple proportional controller K, obtain all pertinent pints for root locus and sketch the root locus on a linear graph paper.

- i) Determine the location of the dominants poles to have critically damped response, and find the time constant corresponding to this location.
- ii) Also determine the value of K and the corresponding time constant for dominant poles damping ratio of 0.707.
- iii) If G_c(s) is a phase lead compensator, design the compensator for the following time-domain specifications:
 Dominant poles damping ratio ζ=0.707 and dominant poles time constant

 τ =0.5 seconds.

(25 marks)

Q3 a) The control system of jet printer valve has open loop transfer function as follows:

$$KGH(s) = \frac{K}{(s+70)s}$$

Design an appropriate state variable feedback system for $r(t) = -k_1x_1 - k_2x_2$. The velocity error constant K_v to be 35 and the overshoot to a step to be approximately 4% so that damping ratio is 0.707. The settling time (with a 2% criterion) desired is 0.11 second.

(12 marks)

b) A process has the transfer function:

$$\dot{x} = \begin{bmatrix} -10 & 0 \\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \end{bmatrix} \mathbf{u}$$

- Determine the state variable feedback gains to achieve a settling time (with a 2% criterion) of 1 second and an overshoot of about 10%.
- ii) Sketch the block diagram of the resulting system.

(13 marks)

Q4 (a) Draw the integrated full-state feedback and observer block diagram. From this diagram prove that the equation of feedback law and observer yields the compensator system is given by:

$$\hat{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{L}\mathbf{y}$$

 $u = -\mathbf{K}$

(12 marks)

(b) Consider the system represented in state variable form:

$$\dot{x} = \begin{bmatrix} 1 & 2 \\ -6 & -12 \end{bmatrix} x + \begin{pmatrix} -5 \\ 1 \end{pmatrix} u$$

y=[4 -3]x + [0]u

- i) Verify the system is observable and controllable.
- ii) Design the full state feedback law using Ackerman's method if $s_{1,2}=-1\pm j$.
- iii) Design an observer by placing the closed loop system poles at $s_{1,2}$ =-12.

(13 marks)

Q5	a)	i)	What is a digital signal?	
		ii)	Draw the location of its poles in the z-plane.	
				(6 marks)
	b)	i)	What is an anti-alaising filter?	
		::>		C 1 · ·

ii) State the sampling theorem and describe the effects of alaising on a sampled signal.

(6 marks)

c) The following transfer function is a lag network designed to introduce a gain attenuation of 10 (-20 dB) at ω =3 rad/sec:

$$G(s) = \frac{10s+1}{(100s+1)}$$

- (i) Assume a sampling period of T=0.25 sec, and compute and plot in the z-plane the pole and zero locations of the digital implementations of H(s) obtained using pole-zero mapping.
- (ii) For the equivalent digital systems in part (i), plot the Bode magnitude curves over the frequency range ω =0.01 to 10 rad/sec.

(13 marks)

×.

.

FINAL EXAMINATI	N		
SEMESTER/SESI :2/2011/2012	PROGRAM	PROGRAMME: BDD	
COURSE : CONTROL SYSTEM DESIGN	CODE	: BDC 4023	

Sequence	Transform	ROC
l. δ[n]		All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	<i>.</i>	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. a ⁿ u[n]	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
0. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
1. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
2. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r
3. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0

Table Q5: Some Common z-Transform