CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2011/2012

THIS PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

- Ql a) Briefly explain the purpose of representing state space vector in dynamic systems. (5 marks)
	- b) Figure Q1 shows a spring-mass-damper system where k_1 and k_2 are the spring coefficients, and c_l is a damping coefficient of the system. The system is given with u, an external force acting on system; m_1 and m_2 are mass of carts, and p and q are position of carts.
		- i) Derive all equations related to this system.
		- ii) Draw the block diagram related to part (i).
		- ii) From equations derived in part i), determine the matrix A and matrix B using state space methods. Obtain the transfer function of the system.

(20 marks)

Q2 Consider the control system shown in Figure Q2. The open loop transfer function of a system is given as, $G(s) = \frac{1}{s(s+2)(s+5)}$

Assume the compensator, $G_c(s)$ is a simple proportional controller K, obtain all pertinent pints for root locus and sketch the root locus on a linear graph paper.

- i) Determine the location of the dominants poles to have critically damped response, and find the time constant corresponding to this location.
- ii) Also determine the value of K and the corresponding time constant for dominant poles damping ratio of 0.707,
- iii) If $G_c(s)$ is a phase lead compensator, design the compensator for the following time-domain specifications: -Dominant poles damping ratio $\zeta=0.707$ and dominant poles time constant

 $\tau=0.5$ seconds.

(25 marks)

Q3 a) The control system of jet printer valve has open loop transfer function as follows:

$$
KGH(s) = \frac{K}{(s+70)s}
$$

Design an appropriate state variable feedback system for $r(t) = -k_1x_1-k_2x_2$. The velocity error constant K_v to be 35 and the overshoot to a step to be approximately 4Yo so that damping ratio is 0.707. The settling time (with a 2Yo criterion) desired is 0.11 second.

(12 marks)

 $b)$ A process has the transfer function:

$$
\dot{x} = \begin{bmatrix} -10 & 0 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u
$$

y=[0 1]x + [0]u

- i) Determine the state variable feedback gains to achieve a settling time (with a 2% criterion) of 1 second and an overshoot of about 10%.
- ii) Sketch the block diagram of the resulting system.

(13 marks)

Q4 (a) Draw the integrated full-state feedback and observer block diagram. From this diagram prove that the equation of feedback law and observer yields the compensator system is given by:

$$
\hat{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K} - \mathbf{L}\mathbf{C})\hat{\mathbf{x}} + \mathbf{L}\mathbf{y}
$$

u=- \mathbf{K}

(12 marks)

(b) Consider the system represented in state variable form:

$$
\dot{x} = \begin{bmatrix} 1 & 2 \\ -6 & -12 \end{bmatrix} x + \begin{pmatrix} -5 \\ 1 \end{pmatrix} u
$$

y=[4 -3]x + [0]u

- i) Verify the system is observable and controllable.
- ii) Design the full state feedback law using Ackerman's method if $s_{1,2}=-1\pm j$.
- iii) Design an observer by placing the closed loop system poles at $s_{1,2}$ =-12.

(13 marks)

 \mathbf{ii} State the sampling theorem and describe the effects of alaising on a sampled signal.

(6 marks)

The following transfer function is a lag network designed to introduce a gain attenuation of 10 (-20 dB) at ω =3 rad/sec: c)

$$
G(s) = \frac{10s + 1}{(100s + 1)}
$$

- (i) Assume a sampling period of $T=0.25$ sec, and compute and plot in the z-plane the pole and zero locations of the digital implementations of H(s) obtained using pole-zero mapping.
- (ii) For the equivalent digital systems in part (i), plot the Bode magnitude curves over the frequency range ω =0.01 to 10 rad/sec.

(13 marks)

 $\ddot{}$ $\overline{}$

Table Q5: Some Common z-Transform

 $\begin{array}{c} \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \$ \cdots المتوارث السارة $\prod_{\substack{1\leq i_1<\cdots < i_r}}$ \pm 1.1 \pm $\frac{1}{2}$ $\mathcal{A}^{\mathcal{A}}$ \sim ÷. $\omega_{\rm{r}}$ d. \sim $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\Delta \phi$ $\frac{1}{\sqrt{2}}$ $\ldots \frac{1}{4^n}$ \ldots). $\frac{1}{2}$. \sim \sim $\frac{1}{2}$. $\label{eq:2} \begin{array}{l} \mathcal{L}_{\text{max}}(\mathcal{A}) \geq 0 \end{array}$ J. 4. الأواستين -4- ± 4 and ± 1 ţ. il a singl 급 formal copy tina.
P $\frac{1}{\alpha}$. $\hat{z}_{\rm{gas}}$. $\frac{1}{2}$ \mathbb{A}_θ \sim \sim $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ and $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ i eti $\frac{1}{\sqrt{2}}$ $\label{eq:1} \begin{split} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) & = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) & = \frac{1}{2} \left(\frac{1}{2} \right) & = \frac{1}{2$ alian (B al ta \pm $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2}$ $\frac{1}{\dim\dim\mathcal{A}}$ $\frac{1}{\frac{1}{2}+\cdots}$ - L Ĵ. $\label{eq:1} \left\langle \omega_{\text{eff}} \right\rangle = \left\langle \omega_{\text{eff}} \right\rangle$ $\frac{1}{2} \frac{1}{2} \frac{$ 눈길이 들 in mang e di pe J. $\frac{1}{\sqrt{2}}$ r i J $\begin{aligned} \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) = \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \end{aligned}$ ÷ $\big\}$. d. $\frac{1}{\sqrt{2}}$. ϵ converts ϵ \sim mass $\frac{1}{2}$. $\frac{1}{\sqrt{2}}$ j
Lind J. ing).
P ÷ $\frac{1}{2}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\mathcal{L}^{\text{max}}_{\text{max}}$ maria de la provincia del política.
En la provincia de la provinci \mathbb{R}^n $\sim 10^{11}$ $\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$ $\label{eq:3} \lim_{t\to 0}\frac{1}{t}\left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$ $\label{eq:1} \begin{array}{ll} \mathbb{Z}^2 \times \mathbb{Z}$ $\mathcal{L}_{\rm{eff}}$ $\begin{array}{c} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \end{array}$ ala persiana $\frac{1}{2}$ $\frac{1}{\alpha}$. чģ. \sim $\label{eq:1} \mathcal{L}(\alpha,\alpha_1) = \mathcal{L}(\alpha,\alpha_1)$ α is a set of the α $\sim 10^7$ $\hat{\mathcal{A}}$ $\frac{1}{\gamma}$. 나는 $\label{eq:4} \mathbb{E}[\frac{1}{2},1] = \mathbb{E}[\mathbb{E$ $\mathbb{E}[\mathbb{$ Ĵ. ul. j. الأنفاذ \sim $\overline{}$ 一般 医三十二指数 $\sim 10^4$ ing l ÷ \sim \sim